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ABSTRACT: Beside analytical approaches, physical modelling represents probably the oldest design 
tool in hydraulic engineering. For free surface flows, the similitude according to a Froude similarity 
allows for a correct representation of the dominant forces, namely gravity and inertia. In parallel, fluid 
constants such as the surface tension and the viscosity might be incorrectly reproduced, affecting the air 
entrainment and transport capacity of a high-speed model flow. Consequently, small physical models 
operated under the Froude similitude systematically underestimate the air entrainment rate and air-water 
interfacial properties. To limit this deficit, minimal values of the Reynolds or Weber number have to be 
respected. The paper summarises the physical background of these limitations and their combination in 
terms of the Morton number. Based upon a literature review, these limits are listed and discussed, 
resulting in a series of more conservative recommendations in terms of air concentration scaling. 
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1 INTRODUCTION 

The spillway tunnel on the Arizona side of the Boulder Dam (USA) operated during four months in 
1941 with a relatively small discharge. A routine inspection after this operation period indicated a 35 m 
long tunnel section which was completely destroyed as a consequence of cavitation. To repair the damage 
and to avoid similar phenomena in future, a re-lining combined with the installation of – then not yet 
common – aeration devices was recommended. Consequently, the US Bureau of Reclamation studied 
several ”air injection” devices in a 60:1 scale model (Bradley 1945), considering among others typical 
deflectors serving today as spillway aerators. This study certainly represents a pioneer work in chute 
aeration studies. Nonetheless the results seemed rather disappointing. Bradley concluded: “The results of 
this investigation were negative in character. The plan for aeration of the Boulder Dam spillway by 
devices constructed on the tunnel invert […] does not appear encouraging”. The statement derived from 
the fact that only very small, insufficient air concentrations were measured in the physical model designed 
based upon a Froude similitude. Bradley realized that “the viscosity of the water and air are same in both 
model and prototype, and that entrainment of air from the surface will be much more pronounced in the 
prototype”. 

Air-water two-phase flows are observed in several hydraulic structures, such as hydraulic jumps, 
intakes, dropshafts, spillways, jets and plunge pools. The flow phenomena in these structures are 
challenging, and yet relevant to hydraulic design. Physical model testing is often applied to investigate the 
related flow characteristics. In order to keep the physical models within economic dimensions and to 
minimize the discharges to supply, Froude similitude and scale factors larger than 30:1 are often applied. 
These small models characteristically underestimate the air entrainment and transport in the fluid, because 
the effects of surface tension and viscosity are relatively over-represented in the model, given that water 
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is used as fluid in both model and prototype. This is illustrated in Fig. 1, showing a prototype opertion 
(Fig. 1a), two scale models at 10:1 and 25:1 geometric scale (Fig.1b) The literature describes mainly two 
approaches to combine the Froude similitude with a reasonable approximation of the rate of air 
entrainment, namely to (a) limit the model scale to maximally 10:1 (e.g. Chanson 1997, Boes 2000), or (b) 
respect minimum values of the Weber and/or Reynolds numbers (e.g. Pfister and Chanson 2012). Both 
approaches allow more realistic predictions of air entrainment and transport based upon the scaled model 
results. These limits are derived from model families or comparisons with prototype measurements. 

Early studies of the bubble rise velocity in stagnant fluids highlighted the relevant dimensionless 
numbers, namely the Reynolds and Weber numbers. The results suggested some limiting value of them, 
above which the effect of fluid constants on the bubble motion is small. In these contributions, the 
introduction of the Morton number, as a link between the aforementioned numbers, allows for an 
expression of these limiting values as function of the Froude number. This concept is applied on the base 
of scaling limitations published in the literature, while the notion of scale effects is discussed in a broader 
context. 
 
2 BUBBLE RISE VELOCTIY IN STAGNANT FLUID 

The motion of a rising bubble in a stagnant fluid is dominated by the physical constants of the fluid 
and of the gas, namely: 

ν = kinematic viscosity [m2/s] 
ρ = density [kg/m3] 
σ = surface tension [N/m] 

The first two variables must be theoretically considered for both gas and fluid phases. For pressures 
which are far from the critical point, the forces within a gas bubble might be neglected as they are small 
compared to those within the liquid. Note that the critical point describes the condition at which the phase 
boundary between fluid and gas terminates. For water, the latter is at around 374 °C and 22 MPa. These 
conditions are unlikely in hydraulic engineering, and the gas (herein air) constants are of minor 
significance. 

The motion of gas bubbles in a fluid is governed by buoyancy, resulting from the density difference 
between gas and fluid. If the gas density is negligible in comparison to that of the fluid, as for air and 
water, the buoyancy is a function of the pressure gradient ∂P/∂z, hence the gravitational acceleration g, 
where z is the vertical elevation. Buoyancy depends further upon the bubble volume which is typically 
linked to an equivalent sphere diameter D. As soon as a bubble moves relative to the surrounding fluid, 
the latter generates a certain resistance, which is linked to the bubble (subscript b) rise velocity Vb. 
Schmidt (1934) conducted a dimensional analysis of the bubble motion in fluids. He concluded that the 
related processes can be described based on the following dimensionless numbers 

bubble Reynolds number  
ν

DVb
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The bubble rise velocity Vb was included in all numbers, and it could not be derived simply from 
dimensionless charts based upon Rb, Fb and Wb. A re-arrangement was thus proposed to give only one 
explicit term containing Vb, namely that of the bubble Reynolds number Rb. Schmidt suggested: 
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(a)   

(b)   
Figure 1 Comparison of air-water flows between prototype and laboratory model operations of stepped spillways; (a) 
Paradise Dam stepped spillway (Australia) in operation on 5 March 2013 (Photographs H. Chanson): Q ≈ 2,500 m3/s, 
hc/h = 2.9, R = 7×106, h = 0.62 m, θ = 57° - View from downstream (left) and details of air-water flow structures next 
to the inception point of free-surface aeration (right); (b) Laboratory experiments (Courtesy of Mr P. Royet, IFSTTAR) 
– Left: Q = 0.40 m3/s, hc/h = 3.2, R = 2.6×105, h = 0.060 m, θ = 53°; Right: R < 4×104, h = 0.024 m, θ = 63.4°, 59° & 
53° (from left to right) 
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Equation (4) describes a priori the bubble characteristics including its diameter D and rise velocity Vb. 
Equation (5) includes the bubble diameter, fluid constants and gravity acceleration, while Eq. (6) contains 
exclusively fluid constants and gravity acceleration. Consequently the bubble rise velocity in a stagnant, 
infinite fluid volume was expressed by Schmidt (1934) as: 
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Schmidt concluded his investigation with the remark that physical experiments had to be conducted to 
support the above mentioned hypotheses, in particular with different fluids. Habermann and Morton 
(1954) conducted such experiments related to the drag coefficient of freely rising air bubbles in different 
stagnant fluids under various temperatures. The following liquids were tested: water (6, 19, 21, and 
49 °C), glim solution, mineral oil, varsol, turpentine, methyl alcohol, olive oil, syrup, different corn 
syrup-water mixtures, glycerin-water mixtures, and an ethyl alcohol-water mixture. Equation (6) was 
adapted by introducing the dimensionless parameter M = gµ4/(ρσ3) where µ the dynamic viscosity. 
Consequently, Eq. (6) was rewritten: 

42

3

RF
WM =          (8) 

The tests of Habermann and Morton (1954) covered 0.2×10‒2 ≤ M ≤ 0.3×10‒11. 
With increasing bubble size, a change in rising bubble shape was observed, from spherical to 

ellipsoidal, and finally to spherical cap, for all liquids. The bubble volumes at which the transition 
occurred were a function of the fluid properties. Thus the dimensionless number M had to be a constant to 
generate a similar bubble behaviour. The reasoning may be applied for similar bubbles in different fluids, 
as well as for a single fluid including bubbles under different scale factors. The latter is a common 
situation in physical modelling of high-velocity free-surface flows in hydraulic structures, which 
encompass two-phase air-water flows. In these air-water flows, the fluid constants remain basically 
unchanged since air and water are used in both prototype and model, whereas other characteristic values 
linked to geometry and force ratios vary. Note however that Habermann and Morton (1954) concluded 
that the air bubble motion at the terminal velocity cannot be described solely by the dimensionless 
numbers presented in Eqs. (4) to (6), because the related drag coefficient was also a function of the gas 
phase motion within the bubbles. 
 

 
Figure 2 Drag coefficient as a function of the bubble Weber number Wb for a single bubble rising at terminal velocity 
in various stagnant fluids (Habermann and Morton 1954) 
 

An example for the effect of M on the rise bubble drag coefficient is shown in Fig. 2. Although no 
clear trend is recognizable, “large” values of M (10‒2) tended to relatively large drag coefficients, whereas 
“small” values of M (10‒11) indicated rather small drag coefficients. Interestingly, however, for Wb > 40, 
all drag coefficient curves seemed to collapse, independent of M. A similar trend was seen in terms of the 
bubble Reynolds number Rb, where the data collapsed for Rb > 3×103. The latter would imply that the 
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terminal bubble rise velocity of air bubbles is similar when the equivalent bubble diameter is larger than 
some 10 to 20 mm. In practice, the air bubble rise velocity in water tends to be constant for bubble 
diameters between 1 and 20 mm, with increasing rise velocity with augmenting bubble size for D > 20 
mm (Comolet 1979). 
 
3 CONCEPTUAL ANALOGY TO AIR-WATER MIXTURE-FLOW 

The section 2 shows the first investigations into a description of the effect of fluid constants and 
bubble characteristics on their motion, although it did not attempt to reflect upon the current 
state-of-the-art on bubble motion in fluids. In physical modelling of hydraulic structures, the behaviour of 
a single air bubble in stagnant water is rarely of interest. Typically, the study focus is the flow 
characteristics of air-water mixture-flows as a continuum, for example in stepped spillways, hydraulic 
jumps, free water jets, steep chutes, and dropshafts. The knowledge of the air bubble entrainment and 
transport is essential to describe the flow properties, including the adequate free-board height, jet 
disintegration, friction losses, and air-water mass transfer rate (Rao and Kobus 1971, Wood 1991, 
Chanson 1997). 

Most physical models are kept within economical dimensions, implying a Froude similitude with a 
geometric scale ratio of typically 30:1 to 60:1 (Novak and Cabelka 1981, Chanson 1999). The dynamic 
similitude used to derive model-scaling laws considers the ratios of forces acting on the fluid(s). The ratio 
of inertia to gravity forces results in the Froude number; the ratio of inertia to viscous forces gives the 
Reynolds number; the ratio of inertia to surface tension forces yields the Weber number. A true dynamic 
similarity of aerated flows require achieving identical Froude, Reynolds and Weber numbers in both 
prototype and model. This is physically impossible when the same fluids (air, water) are used in both 
prototype and model. As a consequence, small scale models based upon the Froude similitude may 
underestimate the air transport in the fluid, because the relative effects of surface tension and viscosity are 
over-represented (Wood 1991, Chanson 2009). Since a true dynamic similitude exists only at full-scale, 
the underestimation of scale model air entrainment and transport must be minimized in modelling practice 
by limitations in terms of W or R. These limits are derived from systematic model families and 
comparisons with prototype data. 

Such limits represent a link between the above description related to the bubble rise velocity (section 
2) and observations from model families (section 4). Following the results for single bubbles in a stagnant 
fluid (Schmidt 1934, Habermann and Morton 1954), a similar concept is proposed herein to adequately 
model an air-water mixture-flow continuum under a reduced geometric scale factor. The relevant 
dimensional numbers are: 

Reynolds number   
ν
Vh

=R          (9) 

Froude number    
gh
V

=F          (10) 

Weber number    
σ

ρ hV 2

=W         (11) 

with V as flow velocity, and h as equivalent clear-water flow depth. Note that the dimensionless parameter 
M is denoted the Morton number. For air-water two-phase flows: M = 3.89×10‒11 using the fluid constants 
at 15 °C. 
 
4 LIMITING FACTORS 

A number of model families and comprehensive data sets were published to test scale effects in the 
modelling of air-water two-phase flows. Table 1 summarises a number of related literature, leading to 
some suggested limiting criteria of about W0.5 > 110 to 170 and R > 1×105 to 3×105 when the relevant 
scaling parameter is the air concentration. For example, Pfister and Hager (2010a,b) identified a gross 
underestimate in terms of local bottom air concentration by up to one magnitude when W0.5<140. In 
Fig. 3, the abscissa corresponds to the streamwise normalizations fD and fS given by these authors, and the 
trend lines correspond to the best fit of all data from tests with W0.5≥140. 
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Despite the relatively limited scope of the experimental investigations listed in Table 1, their results 
demonstrated unequivocally the limitations for the physical modelling of two-phase air-water flows. The 
findings of these systematic experimental studies highlighted that (a) the notion of scale effects must be 
defined in terms of some specific set of two-phase air-water characteristics, and (b) some aerated flow 
properties are more affected by scale effects than others, even in large-size facilities. The selection of the 
criteria to assess scale effects is critical: e.g., void fraction, turbulence intensity, bubble size. Any mention 
of scale effects must be associated with a list of tested parameters (Chanson 2009, Chanson and 
Chachereau 2013), and this is well-known in mono-phase flows (Schulz and Flack 2013). The 
experimental data show that some parameters, such as bubble sizes and turbulent scales, are likely to be 
most affected by scale effects (Chanson 2004b, 2009, 2013). It is noteworthy that no distorted physical 
modelling of air-water flows was considered yet, although the scale distortion may enable to achieve 
some similarity in terms of bubble rise velocity on chute spillways and inclined plunging jets. 
 

Table 1 Limiting scale factors to prevent significant scale effects in two-phase air-water flows under Froude 
similitude, with a focus on air concentrations (also denoted as void fraction) for undistorted air-water scale models 

Reference Criterion Air-water flow parameter(s) Application range 
Kobus (1984) R≥1.0×105 Air transport rate Chute air entrainment 
Koschitzky (1987) R≥1.0×105 Air demand flow rate Aerator, particularly β 
Rutschmann (1988) W0.5≥110 Air demand flow rate Aerator, particularly β 
Skripalle (1994) W0.5≥170 Air demand flow rate Aerator, particularly β 

Boes (2000) R≥1.0×105 Void fraction and interfacial velocity Two-phase stepped spillway 
flow (30° & 50° chutes) 

Chanson (2004a) R>1.4×105 (*) Void fraction, bubble count rate, bubble 
chord time, particle residence time Dropshaft 

Chanson et al. (2004) W0.5≥32 Void fraction, bubble count rate Circular plunging jets 

Chanson and 
Gonzalez (2005) R≥3×105 (*) 

Void fraction, interfacial velocity, 
bubble count rate, turbulence intensity, 
bubble chord size 

Two-phase stepped spillway 
flow (3.4° & 16° chutes) 

Murzy and Chanson 
(2008) R>1.0×105 (*) 

Void fraction, interfacial velocity, 
bubble count rate, turbulence intensity, 
bubble chord time 

Hydraulic jump 

Felder and Chanson 
(2009) R>2.5×105 (*) 

Void fraction, interfacial velocity, 
bubble count rate, turbulence intensity, 
integral turbulent time scale, bubble 
chord size 

Two-phase stepped spillway 
flow (22° chute) 

Pfister and Hager 
(2010a) 

R≥2.2×105, 
W0.5≥140 Void fraction  Chute aerator, Cb 

development 

Chanson and 
Chachereau (2013) R>1.3×105 (*) 

Void fraction, interfacial velocity, 
bubble count rate, turbulence intensity, 
integral turbulent time scale, bubble 
chord size 

Hydraulic jump 

Felder (2013) R>2.5×105 (*) 

Void fraction, interfacial velocity, 
bubble count rate, turbulence intensity, 
integral turbulent time scale, bubble 
chord size, bubble clustering 

Two-phase stepped spillway 
flow (9° & 26° chutes) 

(*): incomplete criterion since an asymptotic result was not achieved 
 

Self-similarity is another powerful tool in turbulent air-water flow investigations involving a wide 
spectrum of spatial and temporal scale. Self-similarity is closely linked to dynamic and kinematic 
similarities, and the existence of self-similar relationships may have major implications on the 
measurement strategy in experimental and physical modelling studies (Barenblatt 1996, Foss et al. 2007). 
Although it is nearly impossible to achieve a true dynamic similarity in air-water flows because of the too 
many relevant dimensionless parameters, a number of laboratory data showed a number of self-similar 
relationships that remain invariant under changes of scale. The results may provide a picture general 
enough to be used, as a first approximation, to characterise the air-water flow properties in similar 
hydraulic structures irrespective of the physical scale (Felder and Chanson 2009). 

6 



 

In addition to dynamic similarity and self-similarity, a further modelling approach may be based 
upon some theoretical developments leading to theoretically-based equations. An illustration is the 
analytical solution of the advection diffusion equation for air bubbles (Wood 1984, 1991, Chanson 1997, 
2008). The existence of theoretical relationships may have some implications regarding the laboratory 
study approach and measurement methods. The existence of an analytical solution may allow a drastic 
reduction of the amount of measurements. 
 

 
 

Figure 3 Bottom air concentration Cb curves versus normalization functions f, downstream of (a) deflector, (b) drop 
aerators, with trend line for unaffected tests (‒) and symbols for tests affected by scale effects (after Pfister and 
Chanson 2012) 
 
5 DISCUSSION 

Two criteria are often applied relating to scale effects, i.e. limiting values for W0.5 and R (Table 1). 
When the same fluids (air and water) are used in prototype and model, the two numbers depend on each 
other, beside F and the Morton number M (Eq. (8)). The use of the Froude similitude with water as liquid 
in both model and the prototype leads to 

 M= constant (Eq. (8)), and  
 F is identical in model and prototype. 

For a given F, the product MF2 = W3/R4 has to be identical in the model and the prototype flow. A 
transformation of Eq. (8) gives the direct relationship between R and W as 

4/1

2

3









=

MF
WR          (12) 

Inserting the limitations W0.5 = 110, 140 and 170 into Eq. (12), Fig. 4 presents the results in the related 
F-R curves. For typical high-speed air-water chute flows with 5 ≤ F ≤ 15, scale effects related to air 
concentrations are small when W0.5 > 140 or R > 2×105 to 3×105. The limits are not sensitive to F in the 
aforementioned range, whereas more restrictive limitations in terms of R have to be applied for smaller 
values of F. Note that only one limitation in terms of R or W0.5 has to be considered if applying Eq. (12), 
since the other is implicitly also respected. 

Table 1 suggests that the proposed limiting relationships have become more restrictive over time. 
The trend might be linked to the development in measurement techniques, allowing for more precise and 
punctual (instead of cross-sectional) two-phase air-water flow measurements. Ultimately no scale effect is 
observed at full scale only, using air and water in prototype and model: i.e., in prototype flow conditions. 
But prototype observations are rare. The Aviemore Dam spillway investigations in New Zealand remain a 
key reference (Keller 1972, Cain 1978). A few prototype observations were conducted, mostly qualitative 
like at Dachaoshan Dam spillway (Lin and Han 2001). But even the Aviemore Dam spillway data sets 
might be challenged. The flow conditions corresponded to R ≈ 2×106, which is one to two orders of 
magnitude lower than the design flow conditions of very large spillway systems. A number of recent 
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air-water studies on dynamic similarity would suggest that the extrapolation of Aviemore Dam results 
could be subjected to some scale effects at larger Reynolds numbers. Figures 1 and 5 provide some 
comparative illustrations of prototype and laboratory air-water two-phase flows. Figure 1 presents some 
air-water skimming flow above a stepped spillway. The close-up photographs suggests that the turbulence 
next to the inception point of free-surface aeration differs significantly between prototype and models for 
a comparable Froude number. Figure 5 shows a hydraulic jump stilling basin in operation. In the 
prototype (Fig. 5a), the hydraulic power dissipated in the hydraulic jump as 6 MW per unit width, 
compared to 230 W/m in the laboratory model (Fig. 5b) for an identical Froude number. Again the surface 
turbulence appears to substantially different despite an identical Froude number. 
 

 
Figure 4 Relationship between R and F for different values W0.5 (Eq. (12)) (after Pfister and Chanson 2012) 

 

(a)  

(b)  
Figure 5 Comparison of air-water flow features between prototype and laboratory model operations of hydraulic 
jumps; (a) Hydraulic jump stilling basin downstream of Paradise Dam spillway (Australia) in operation on 30 
December 2010 (Courtesy of B. Chanson): Q ≈ 6,300 m3/s, F = 8, R = 2×107; (b) Laboratory experiment: Q = 
0.030 m3/s, F = 8, R = 6×104 
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6 CONCLUSION 
The physical modelling of air-water two-phase flows in hydraulic engineering would require the 

Froude number F, Weber number W and Reynolds number R to be identical in prototype and laboratory. 
But this is physically impossible. A re-arrangement of the dimensionless numbers, as proposed by 
Schmidt (1934), resulted in the introduction of the Morton number M. The results of previous 
investigations served as basis to the herein described scale effects in modelling high-speed two-phase 
flows, namely (a) the significance of the non-dimensional numbers F, W and R, (b) their combination to 
M, and (c) some limiting values of R and W to reduce the effect of the latter. Combining these 
considerations together with published limits to minimise scale effects in terms of air concentration, the 
outcome indicated that values of W0.5 > 140 and R > 2×105 to 3×105 should be respected to avoid relevant 
scale effects in terms of air concentrations within 5 ≤ F ≤ 15. If one limitation is considered, then the 
other is implicitly respected. For F < 5, these limits have to be selected more conservatively. 

The results of recent experimental investigations emphasised further that the selection of the criteria 
to assess scale affects is critical. These results showed that some parameters, such as bubble sizes and 
turbulent scales, are likely to be affected by scale effects, even in relatively large-size laboratory models 
(e.g. 2:1 to 3:1). No scale effect is only observed at full scale using the same fluids in prototype and 
model. As final words, the present study emphasises (again) the needs for full-scale prototype data of 
two-phase air-water flows, typically observed in prototype hydraulic structures. 
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