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Abstract 

This study aims to provide some new understanding of interfacial aeration and velocity 

redistribution in high-velocity water jets discharging past an abrupt drop. Typical applications 

include bottom outlets and spillway flows past ski jump. Downstream of the drop, the free-jet 

entrains air at both upper and lower air-water interfaces, as well as along the sides. At the 

lower nappe, an air-water shear layer develops and the velocity redistribution within the jet 

was found to be similar to that in two-dimensional wake flow. The results highlighted further 

two distinct flow regions. Close to the abrupt drop (Wex < 5000), the flow was dominated by 

momentum transfer. Further downstream (Wex > 5000), a strong competition between air 

bubble diffusion and momentum exchanges developed. 
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1. INTRODUCTION 

In large dams, bottom outlets are commonly used for reservoir drawdown, sediment 

flushing, river diversion and environmental flow releases (e.g. Vischer and Hager 1998, 

Novak et al. 2001). A typical example is a bottom outlet when a high-velocity supercritical 

flow discharges past an abrupt drop (Fig. 1). Such high-velocity free-surface flows are 

extremely turbulent flows, and interfacial aeration is commonly observed. In Fig. 1, the flow 

Reynolds number is about 8 E+8. Little research has been conducted systematically in the air-

water flow properties of the high-velocity waters discharging at the downstream end of the 

tunnel (Ervine and FALVEY 1987). Experimental studies of high-velocity water jets 

discharging into the atmosphere were often limited to visual observations (e.g. Kawakami 

1973). Some researchers performed air concentration distribution measurements (e.g. Shi et al. 

1983, Low 1986, Chanson 1989, Tseng et al. 1992, Kramer 2004), but limited works included 

air-water velocity distribution measurements (Chanson 1993, Brattberg et al. 1998). 

This paper aims to provide some new understanding of the air-water flow properties in 

high-velocity water jets discharging past an abrupt drop. New experimental investigations 

were conducted systematically in the free-jet. The data are compared with analytical solutions 

of the air bubble diffusion equation and with a wake flow model. The results provide new 

insights into the interactions between the high-velocity water jet and the surrounding air. 
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2. EXPERIMENTAL SETUP 

New experiments were performed in a 0.25 m wide channel ending with a free overfall 

(Table 1). The flume was equipped with a 0.143 m high step located 0.62 m downstream of a 

vertical sluice gate. The water flow rates were measured with a V-notch weir calibrated on-

site using a volume per time technique. The accuracy on discharge measurements was about 

2%. Clear-water depths and velocities were measured with a point gauge and a Prandtl-Pitot 

tube (∅  = 3.3 mm) respectively. Air-water flow properties were measured a double-tip 

conductivity probe (∅ = 0.025 mm) developed at the University of Queensland. The probe 

tips were aligned in the flow direction and excited by an air bubble detector (AS25240). The 

resistivity probe signals were scanned for 40 s at 40 kHz per sensor. The translation of the 

probes in the vertical direction was controlled by a fine adjustment travelling mechanism 

connected to a MitutoyoTM digimatic scale unit. The error on the vertical position of the probe 

was less than ∆z < 0.025 mm. The system (probe and travelling mechanism) was mounted on 

a trolley system. The accuracy on the longitudinal position of the probe was estimated as ∆x < 
0.5 cm. The accuracy on the transverse position of the probe was estimated as ∆y < 0.5 mm. 

Further information and details were provided in Toombes (2002). 

 

2.1 APPROACH FLOW CONDITIONS 

In the main channel, the approach flow was controlled by a sluice gate. The measured 

contraction ratio was 0.66 (±5%) in average. The inflow conditions were supercritical : i.e., 2 

≤ Fro ≤ 10 where Fro is the approach flow Froude number. At the abrupt drop, the flow was 

partially-developed with δ/do  = 0.21 to 0.35 where δ is the measured boundary layer 

thickness and do is the approach flow depth. The depth-averaged air concentration (Cmean)o 

ranged from 0.02 to 0.04 for the investigated flow conditions, where Cmean is defined in 

terms of 90% air concentration. Nappe ventilation was performed with sidewall offsets. 

Cavity pressure measurements demonstrated atmospheric pressures within 0.1 mm of water.  
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Fig. 1 Photographs of air-water flow at bottom outlet - Three Gorges Project on 20 October  

2004, Vo = 35 m/s, Q = 1700 m3/s per outlet, Wo = 9 m (per outlet) 

 

Table 1. Experimental flow conditions 

Ref. xo h Wo W q do Re Comments 

 m m m m m2/s m   

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Present 0.62 0.1433 0.237 0.250    Perspex step and glass flume. 

study     0.084 0.0306 3.3 E+5 Run DT1. 

     0.097 0.0290 3.9 E+5 Run DT2. 

     0.111 0.0296 4.4 E+5 Run DT3. 

     0.087 0.0243 3.5 E+5 Run DT4. 

     0.143 0.0397 5.7 E+5 Run DT5. 

Notes: do : approach flow depth; h : step height; Re : Reynolds number defined in terms of 

hydraulic diameter; W : downstream channel width; Wo : approach channel width; 

xo : approach channel length. 
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Fig. 2 Definition sketch 

 

3. EXPERIMENTAL RESULTS 

For all investigated conditions, the flow may be divided into a number of regions that 

display distinctive characteristics : i.e., the approach flow, free-falling jet, impact region and a 

large air cavity (Fig. 2). The flow was associated with significant air entrainment, which may 

be the cumulative result of a number of mechanisms: (a) interfacial aeration in the approach 

flow region, and at the upper nappe of the free-jet, (b) bubble entrainment in the developing 

air-water shear layer at the lower nappe, (c) interfacial aeration along the jet side shear layers, 

(d) plunging jet entrainment where the lower surface of the free-jet impacts into the pool of 

water beneath the nappe and (e) flow fragmentation at the impact of the nappe on the 

downstream invert, resulting in a significant volume of spray. Herein, this study are focused 

on the first three mechanisms. Toombes (2002) discussed the other mechanisms. 

At the lower nappe, an air-water free-shear layer developed downstream of the step brink. 

Experimental data showed that the amount of air entrained at the lower interface increased 

with distance from the step edge. At the upper interface, aeration was a combination of bubble 

entrainment in the air-water shear layer generated by the upstream sluice gate, free surface 

aeration, and roughness of the free-surface. Although the amount of air entrainment increased 

slightly with distance from the drop, a slower rate was observed at the upper nappe compared 

to the lower nappe. Air was entrained into the jet not only at both upper and lower jet 

interfaces, but as well as along the sides. 

At the upper and lower nappes, the air concentration distributions were successfully 

compared with an analytical solution of the diffusion equation for air bubbles : 
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where C is the air concentration, x is the longitudinal distance from the drop, Vo is the 

approach flow velocity, Dt is the turbulent diffusivity assumed independent of the normal 

direction z, z50 is the location where C = 0.5, and erf is the Gaussian error function. Equation 

(3) is compared with present data in Figure 3, where Z" = (z-z50)/(z90-z10), z10 and z90 are 

the locations where C = 0.10 and 0.90 respectively, and X is the dimensionless horizontal 

distance from the drop (X = x/do). The good agreement between data and theory indicate that 

Dt was approximately constant at each cross-section, but experimental results showed that Dt 

increased with increasing distance from the brink. The trend was consistent with a re-analysis 

of the data of Low (1986), Chanson (1989) and Brattberg et al. (1998). The findings showed 

that the turbulent diffusivity was best correlated by : 

Dt

ν  =  K * Wex       Lower nappe (3 E+3 < Wex < 8 E+5)                                                   (2) 

where ρ and ν are the water density and kinematic viscosity respectively, Wex is the 

longitudinal Weber number defined as Wex = ρ*V
2
*x/σ, V is the air-water velocity, σ is the 

surface tension between air and water. The majority of the data formed a band between : 1 E-

3 < K < 3 E-3, with a mean value of K = 1.5 E-3, despite some scatter accounting for the 

differences in experimental flow conditions and geometries. 

Typical bubble count rate distributions on the jet centreline are shown in Fig. 4. The bubble 

count rate Fa is the number of air-bubbles or air-structures striking the leading probe tip per 

second. The data showed systematically maxima in the upper and lower nappe. At the lower 

nappe, the maximum count rates were about three to five times greater than those observed at 

the upper interface. Further the maximum bubble count rate Fmax decreased with increasing 

distance from the step brink. For all investigated flow rates, the data were best correlated by: 

eq \f(σ * F\s\do3(max),ρ * V\s\up5(3))  =  \(0.11 * We\s\do3(x)  +  610)\s\up5(-1)  

Lower nappe   (3) 
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(A) Upper nappe data - Comparison with Equation (1a) 
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(B) Lower nappe data - Comparison with Equation (1b) 

 

Fig. 3 Dimensionless air concentration distributions (centreline data) 
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Fig. 4 Dimensionless distributions of bubble count rate at the lower jet interface 
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Fig. 5 Dimensionless velocity distributions through the free-jet - Comparison between 

experimental data and numerical analysis 
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Typical centreline velocity profiles through the free jet are shown in Figure 5, where Vp is 

the velocity of the potential (uniform) flow region of the jet, x is measured in metres, Z' is the 

dimensionless distance centred about a point midway between the points of 50% air 

concentration at the upper and lower interfaces : Z' = (z - (z50
UpperNappe

 + z50
LowerNappe

)/2)/do. 

Data from both double-tip conductivity probe and Pitot tube are shown in Figure 5. At the 

upper air-water interface, there was negligible momentum exchange between the flow and the 

atmosphere (Toombes 2002). The inflow conditions were partially-developed with a 

'potential' flow region above the boundary layer. This ideal-fluid flow region was maintained 

in the upper layer of the free-jet, with the velocity increasing along the jet due to gravitational 

acceleration. The ideal fluid flow velocity was predicted using the Bernoulli equation and the 

equations of motion with an error of less than 1%. At the lower nappe, the velocity profiles 

showed a distinct change as the distance from the step brink increased. Immediately 

downstream of the drop, the velocity profile at the lower interface had a profile similar to that 

observed in a turbulent boundary layer. The velocity profile became more uniform across the 

jet as the distance from the drop increased. 

For the present investigation, and within the accuracy of the instrumentation, the 

momentum flux along the water jet Jw (0 ≤ x/do ≤ 15) was calculated as : 

Jw  =  ⌡⌠

z90LowerNappe 

 z90UpperNappe

  *  (1 - C) * V2 * dz (4) 

where V and C are the measured velocity and time-averaged air concentration at elevation z. 

Calculations based upon experimental data demonstrated that there was basically no loss of 

momentum from the water jet along its trajectory. 

In the approach channel, the turbulent boundary layer was a zone affected by a shearing 

force from friction at the invert. Downstream of the drop, the shearing force at the lower 

interface was zero. The internal viscous shear forces within the fluid resulted in a 

redistribution of the velocity profile along the jet. The continuity and Navier-Stokes equations 

were numerically integrated, assuming a monophase liquid jet discharging into a void and 

using Prandtl mixing length hypothesis as: τ = ρ*νT*∂Vx/∂z, where Vx is the streamwise 

velocity component, νT is the momentum exchange coefficient assumed independent of z 

(Goertler 1942). The results demonstrated that the numerical integration predicted well the 

measured velocity profiles (Toombes 2002). A sample output from the model is shown in Fig. 

5. Based upon the measured air-water velocity distributions, the dimensionless momentum 

exchange coefficient was estimated for the investigated flow conditions to be of the order of 

νT/ν = 400, where ν is the water kinematic viscosity. Basically the momentum exchange 

coefficient was found to be independent of the longitudinal location (within 0 ≤ X < 15) and 
inflow conditions. 
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3.1 REMARKS 

The boundary conditions for a jet of semi-infinite thickness discharging into a void are 

similar to the boundary conditions for wake flow behind a symmetrical bluff body. Analytical 

solutions for two-dimensional wake flows can be developed in the far wake region 

downstream : 

V

Vo
  =  1  -  

K'

x
 * exp











- 
Vo * z

2

4 * νT * x
 (5) 

where K' is an integration constant determined to satisfy continuity (e.g. Goertler 1942, 

Schetz 1993). Equation (5) showed a good agreement with both numerical model and 

experimental data, although the assumptions upon which Equation (5) is based (i.e. far wake 

(1-V/Vo) ≈ 1), limit the range of the jet over which it can be accurately applied. It must be 

noted that both analytical and numerical solutions were developed for monophase flow, and 

they did not implicitly account for interfacial aeration. The output from both models can be 

adapted to account for air entrainment by adjusting the scaling of the vertical direction as 

dz' = dz/(1-C), where z is the vertical coordinate assuming no air entrainment, and z' is the 

modified coordinate. 

 

4. DISCUSSION 

Downstream of the step, the free-jet was subjected to both significant interfacial aeration 

and velocity redistribution. Close to the step brink (Wex < 5000), the air bubble turbulent 

diffusivity was significantly smaller than the momentum exchange coefficient : i.e., Dt/νT < 

0.02. The air bubble turbulent diffusivity increased however with distance from the step brink. 

Consequently, further downstream (5 E+3 < Wex < 5 E+4), the turbulent diffusivity was 

almost of the order of magnitude of the eddy viscosity: Dt/νT ~ 0.2 to 0.5. A re-analysis of 

existing data, presented in Chanson (1997), derived the ratio of turbulent diffusivity to eddy 

viscosity for a range of experiments, including two-dimensional plunging jets, two-

dimensional water jets and open channel flows. Results were typically of the order 0.2 < 

Dt/νT < 3. That is, present results for Wex > 5 E+3 fall within this range. The ratio of bubble 

diffusivity to eddy viscosity  Dt/νT compares the effects of the difference in diffusion of a 

discrete bubble particle and small coherent fluid structure, as well as the effect of entrained air 

on the turbulence field. Close to the step brink (Wex < 5000), present result (i.e. Dt/νT < 

0.02) seem to suggest that momentum exchange processes are dominant. Further downstream 

(5 E+3 < Wex < 5E+4), the results (i.e. Dt/νT ~ 0.2 to 0.5) imply strong competition between 

the air bubble diffusion and momentum exchange processes. The presence of large amounts 

of entrained air is expected to modify some turbulence characteristics while the turbulence 

controls the mechanism of bubble break-up and the air-water interfacial properties. 

There were a number of issues regarding both the estimate of the momentum exchange 

coefficient and any comparison between T and Dt that had to be considered. These included 

that measurements of mixing layer width were complicated by the effect of the initial 

boundary layer velocity profile at the step brink. The thickness of the developing boundary 
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layer did not necessarily reflect the width of the mixing layer, while the eddy viscosity was 

not necessarily constant across the boundary layer. Further estimates of turbulent shear 

stresses and momentum exchange coefficient did not account for air entrainment at the lower 

interface. It could possibly be argued that the estimate of mixing layer thickness used in the 

calculations above underestimated (or overestimated) the mixing layer thickness, while the 

effects of air entrainment on the eddy viscosity were unknown. Additionally the air-water 

mixing layer thickness was initially significantly less than the width of the momentum mixing 

layer, but increased significantly with distance from the step brink. The increase in the width 

of the air-water mixing layer relative to the momentum mixing layer was likely responsible 

for the growth in Dt observed. 

 

5. SUMMARY AND CONCLUSION 

Air entrainment and velocity redistribution were investigated experimentally in a high-

velocity flow past an abrupt drop (Figs. 1 and 2). Downstream of the abrupt drop, the free-jet 

entrained air at both upper and lower air-water interfaces, as well as along the sides. An air-

water shear layer developed at the lower nappe interface. Measured air-concentration 

distributions within the shear layer showed good agreement with an analytical solution of the 

basic diffusion equation for air-bubbles, based on the continuity equation for air (Eq. (1)). The 

turbulent boundary layer upstream of the step brink was partially developed. Downstream of 

the brink, friction forces from the step invert were no longer present and the velocity field at 

the lower nappe was subjected to a strong redistribution. Experimental results showed a 

negligible loss of momentum from the free-falling jet to the surrounding air. The velocity 

redistribution within the jet was successfully modelled by integrating numerically the Navier-

Stokes and continuity equations. Beyond a certain distance from the step brink, the velocity 

field was found to be similar to that in two-dimensional wake flow. 

The results highlighted two distinct flow regions. Close to the brink (Wex < 5000), the flow 

was dominated by momentum transfer as the result of the step brink singularity. Further 

downstream (Wex > 5000), the results implied a strong competition between air bubble 

diffusion and momentum exchanges. 
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