Running the computer support section of a global accounting firm means Ferdinand Gul focuses on service but mostly on people. The UQ Bachelor of Engineering graduate is the Information Technology Service Manager of Global Technology Services, a business which maintains the computer systems of accounting conglomerate Pricewaterhouse Coopers (PwC) in Hong Kong. Ferdinand graduated from UQ in 1992 and majored in Electrical Engineering.

He currently manages a team of 25 electrical and computer engineers who provide service and support to 2500 PwC staff. His team builds PwC specific computers, and supports software, networks, email, databases, printers and storage resources, and advises on outages and updates.

“I like coming up with new ideas and improving processes and workflows and working with people to solve problems,” Ferdinand said.

“I also like dealing with unexpected issues and helping my younger team members work towards achieving their potential.”

Ferdinand’s first job after graduating was with a multimedia distribution firm before he joined a mobile phone company in Hong Kong. He then worked for Lucent Technologies, another mobile phone company outside Chicago in the US, servicing its Asian and North American customers. He has also worked in IT for Fujitsu in Japan.
Why choose UQ for studies in Engineering, Architecture & Planning?

Academic staff in the areas of Engineering, Architecture and Planning are professionals in their fields and involved in leading research. As a result, teaching material is current, supported by world-class research and relevant to the needs of industry.

UQ offers the largest choice of engineering programs in Queensland, with 15 major areas of specialisation.

In the Bachelor of Engineering (BE) program, you can broaden your studies or become involved with new and emerging disciplines by electing to add a minor to the major field you have chosen. Studying a minor takes advantage of the electives options within the BE program. Study in most of the minors would generally not need to commence until the second year of your studies, except in the case of Biomedical Engineering where you may opt to enrol in biology electives in Year 1 of your studies.

Currently, minors are available in: Biomedical Engineering; Chemical Engineering; Extractive Metallurgy; Materials Engineering; Mechanical Engineering; Mineral Process Engineering; Mining Engineering; and Telecommunications Engineering.

UQ is unique in Australia in combining the disciplines of geography and Geographic Information Science (GIS) with urban and regional planning, environmental management, real estate and development and project management.

It is also one of Australia’s leading institutions for architectural education and research, with a program designed to meet the changing demands of the profession.

UQ’s facilities and special features include:
> the Centre for Hypersonics, the world’s largest university-based hypersonics group
> student access to 14 branches of the UQ Library, including the dedicated Dorothy Hill Physical Sciences and Engineering Library
> an experimental mine located close to UQ St Lucia
> architecture facilities including flexible exhibition space, impressive computer teaching laboratories and studio facilities
> field and survey equipment including Global Positioning Systems (GPS)
> extensive GIS software, and
> formal industry programs involving work experience and employment opportunities to complement University studies.

Career opportunities in this discipline

Graduates in the disciplines of Engineering, Architecture and Planning contribute to all areas of industry and society, and employment prospects are excellent. Careers are available in a range of private companies and government organisations in areas such as:
> architecture
> biomedical and pharmaceutical development
> commercial development
> computing and telecommunications
> construction and housing
> consulting
> environment reserves and tourist centres
> environmental protection and management
> manufacturing
> minerals processing
> mining
> natural resource utilisation
> power generation and transmission
> product design and development
> public utilities
> research
> satellite and spacecraft technology
> software development
> statutory bodies
> town planning and regional development
> transport

Degrees in this discipline
> Architectural Design see page 52
> Engineering see page 52
> Regional and Town Planning see page 55
Eligibility for visa
International students must undertake programs on campus at UQ on a full-time basis to be eligible to apply for an Australian student visa. See page 96 for more information.

BACHELOR OF Architectural Design

Location St Lucia
Commencement semester 1
Duration 3 years full-time
Admission requirements Queensland Year 12 (or equivalent) English (see also pages 94-95)
Honours Available as an extra year study
Additional information is provided in the tables on pages 84-86

Program outline
The Bachelor of Architectural Design (BArchDes) is the first stage of obtaining a professional qualification in Architecture. The BArchDes provides the basis on which students can progress to the professional Master of Architecture. Architecture is a dynamic and demanding profession, making a positive contribution to the shaping of our built environment and our culture. The essential skill of an architect is the ability to design buildings and spaces with an inherent concern for human living and working environments.

Supplementary information
In addition to design, key areas of the program are environmental design, architectural technology, architectural communication and computing, people/environment studies, history and theory, and professional studies.

Career opportunities
Graduates have employment opportunities with:
> Architects and in allied design professions
> Commercial development companies
> Government departments
> Local authorities
> Private offices
> Research organisations
> Statutory bodies

Professional memberships
Student membership of the Royal Australian Institute of Architects

Sample first year courses
> Architectural Design 1
> Architectural Communication 1
> Architectural Technology 1
> Principles of Architecture

Additional cost
Drawing board and equipment approx. AUD$600-700; consumables, paper, pens etc approx. AUD$100-200; books, and technical notes etc approx. AUD$150+. Refer to the Program Guide for New Students (www.cpsa.uq.edu.au) for details.

Contact details
International Recruitment Manager
www.uq.edu.au/international/enquiry
Phone (outside Australia) + 61 3 8676 7004
(within Australia – Free Call) 1800 671 980

BACHELOR OF Engineering

Location St Lucia
Commencement semesters 1, 2
Duration 4 years full-time
Admission requirements Queensland Year 12 (or equivalent) English (see also pages 94-95), Mathematics B, plus one of Physics or Chemistry. Both Chemistry and Physics are recommended
Honours Available as part of the standard program
Additional program information is provided in the tables on pages 84-86

Program outline
The University of Queensland’s Engineering program offers the largest choice of engineering options in Queensland, with a large number of distinct majors and extended majors. The flexible curriculum equips students to work in both established and newly emerging areas of engineering. Students develop their understanding by applying basic science and engineering principles to engineering problems of commercial importance. In addition to technical expertise, the program emphasises essential workplace skills such as communication, teamwork, project management, problem-solving and lifelong learning.

The range of options available through majors, extended majors, minors or dual degrees, gives students the flexibility to pursue fields of study to the depth or breadth of knowledge required. Extended majors and minors are a set of courses that takes advantage of elective provisions within the program, thereby not lengthening the program duration. Extended majors offer a more concentrated program of study, while minors offer study in an area of engineering additional to but complementary with the major. These study alternatives give students a competitive advantage in achieving their career aspirations. Most Engineering majors can be undertaken as extended majors or with a dual program. With the majority of majors, students can also choose an additional minor (options are detailed in the individual majors outlines).

The UQ Engineering degree is widely accredited and respected and this program equips students to work both in Australia and overseas.

Placement Courses
Completion of 60 days of engineering professional practice to satisfy the requirements of Engineers Australia

Supplementary information
Domestic and international students are invited to apply to the Faculty of Engineering, Physical Sciences and Architecture for credit towards the Bachelor of Engineering. Applicants should submit their official academic record and official course descriptions for studies completed at other universities. Depending on the level and relevance of previous study, students may be granted up to five semesters credit, and should seek faculty advice on what options are available.

Majors
Chemical Engineering
Chemical engineering is the design, management and optimisation of processes that turn raw materials into valuable products, using the latest knowledge of biology, chemistry, physics and mathematics, integrated with engineering principles and economic consideration. Chemical engineers ensure economic viability, and a minimum loss of materials and consumption of energy, while maintaining safety and environmental standards. This major also applies knowledge within team-based project work. Students tackle real world issues sourced from industries and the latest research. Minors are available in chemical metallurgy or materials engineering.

Chemical engineering is a rapidly changing profession with engineers working at the cutting edge of fields such as molecular biology, nanomaterials and chemistry, mathematics and information technology. They work in a range of industries, government departments and private consultancies, within environmental protection, management and safety; natural resource utilisation and the energy sector; chemical, petroleum and petrochemical industries; biochemical, biomedical and pharmaceuticals industries; computer-aided process and control engineering; advanced materials design and manufacture; minerals processing and related industries; food processing and product design and development.

Chemical and Biological Engineering
Engineering combines quantitative analysis and synthesis to explain system design principles. Through the genomics revolution, engineers can now begin to tackle biological problems using the same “measure, model and manipulate” approach they have applied to physics and chemistry. Indeed, applying this system approach is widely recognised as essential not only for the development of innovative biotechnologies but also to yield fundamental scientific understanding of biological systems. As our ability to modify and control biological systems increases, biological processes will replace chemical and mechanical processes due to their inherent advantages of renewable resources, mild operation conditions and minimal waste problems. Early signs of the change are seen not only in the high-value pharmaceutical industry, but also in the production of bulk chemicals like lysine by fermentation and in bioleaching of copper and gold from mineral ore. Advances in our understanding of and ability to mimic biological systems are also inspiring completely new approaches such as nanotechnology and tissue engineering, which will form the foundation of new industries of the 21st Century.

In this extended major, biological engineering is taught together with chemical engineering. Graduates are accredited as chemical engineers having completed every compulsory course. Graduates provide traditional chemical engineering industries an understanding of the opportunities offered by biotechnology and provide emerging biotechnology companies the power of the “measure, model and manipulate” engineering approach. Graduates are also well prepared for graduate studies in biological engineering and medicine.
Chemical and Metallurgical Engineering

Metallurgical engineers play a key role in ensuring the sustainability of our modern society. Everything in our material world, even our major energy sources, are derived from minerals or recycled materials. It is the role of the metallurgical engineer to develop design processes that transform these low value raw materials into useful high value mineral and metal products. The extended major in Chemical and Metallurgical Engineering provides the best of both worlds – a broad education in chemical engineering combined with more specialist metallurgy courses. The program for the extended major has been designed for maximum commonality with the chemical engineers program, particularly in Years 1 and 2 of the program. Elective courses in chemical engineering can be counted towards the extended major. The compulsory metallurgy courses included in the program provide students with the expertise necessary to employ the employee in the minerals and manufacturing industries seek. These courses include both the physical and chemical processing techniques, process modelling, process design and economics and individual research. The combination of courses within the extended major program provides maximum flexibility in job choice with a head start for those who want a career in the minerals and manufacturing industries.

Civil Engineering

Civil engineers provide for people’s needs, and are engaged in designing, constructing, maintaining and operating facilities and equipment. Civil engineers may be involved in the design, construction and development of biomedical engineering may be involved in the design, construction and development of buildings, bridges, roads, harbours, airports, coastal protection, water supply and public health. Civil engineers apply their theoretical knowledge to produce efficient and economic facilities that are aesthetically pleasing and satisfy society’s needs. They have an aptitude for mathematics and physics and a desire to meet environmental and technological challenges. Students can study in the areas of structural engineering, hydraulic engineering, transportation engineering, geomechanics, hydrology and public health engineering, or management, construction and economics.

Computer Systems Engineering

Computer systems engineering is concerned with the design, construction, operation and maintenance of electronics and electrical energy infrastructure, including power generation and distribution, electrical installations in major building and mining projects, telecommunications infrastructure, aerospace and defence systems, medical imaging systems, industrial and scientific instrumentation and control. This major prepares students to work in innovative environments, designing cutting-edge products for the information and communication industries. Strong emphasis is given to practical hands-on experience with high technology equipment. Team and individual projects are a strong focus of the program, an approach valued by employers. Students can also include a minor in biomedical engineering or telecommunications engineering. Computer systems engineers typically work in one of the following fields: telecommunications; signal and image processing; robotics and intelligent systems; computer systems engineering; electrical power generation, transmission and distribution; biomedical engineering including biomedical imaging and signal processing for biomedical applications. Career opportunities are found in the telecommunications and microwave industry, mining and transport sector, power generation and transmission industries and in the government and defence sector. Many UQ graduates are forming their own companies quite early in their careers and in a 2006 nationwide survey by APESMA, electrical engineering commanded the highest mean commencing salary of all engineering disciplines in Australia.

Electrical Engineering

Electrical engineering is concerned with electrical and electronic devices and systems. Electrical engineers design equipment ranging from heavy power generators to tiny computer chips. Their work contributes to almost every sector of society, for example, home entertainment systems, mobile phones, digital cameras and television to enhance our lifestyle, medical imaging systems for improved healthcare, electrical appliances for homes, scientific instruments for laboratories, lasers for reliable high speed communication, handheld multimedia devices to provide information on the move, and satellite systems for remote sensing of the environment and reliable mobile and fixed energy systems to power all of these. This major prepares students to design cutting-edge products for the information and communication industries. Strong emphasis is given to practical hands-on experience with high technology equipment. Students can include a minor in biomedical engineering or telecommunications engineering.

Electrical and Aerospace Engineering

Electrical and aerospace engineering combines a full single major in Electrical Engineering with additional specialist study and specialist project work in the aerospace and aviation industry.

Electrical engineers design, build, operate and maintain much of our electronics and energy infrastructure – things like the Internet, home theatre entertainment systems, mobile phones, digital cameras and television, medical imaging systems; electrical appliances for homes; scientific instruments for laboratories; lasers for reliable high speed communication; satellite systems for remote sensing of the environment; and reliable mobile and fixed energy systems to power all of these. In addition to this, avionics and aerospace students are specifically equipped with extra skills to design the electronics in modern aircraft and airport systems.

This extended major prepares students to design cutting-edge electronics products for the aviation industry, and also equips graduates with the skills to service other parts of the information and communication industries. Strong emphasis is given to practical, hands-on experience with high technology equipment. Students are equipped to work as electrical and electronics engineers in the aerospace industries – airlines, defence, airports, and aircraft manufacture. Students are also equipped to work in traditional electrical engineering.

Electrical and Biomedical Engineering

New discoveries and developments in biology and medicine have led to the rapid change and growth of biotechnology research and industry. Biomedical engineering bridges the gap between technology, medicine and biology. It integrates physical, chemical, mathematical and computational sciences and engineering principles with the ultimate aim of improving health care. The degree commences with a broad foundation of preparatory courses in engineering, mathematics, biology and physics, followed by more advanced coursework and laboratory training, combining engineering analysis and design techniques with biology and physiology of cells and organisations.

The program is project-focused including a full-year project in fourth year to develop individual design and research skills, an approach valued by employers. Graduates of biomedical engineering may be involved in the design, construction and development of health and monitoring devices and computers, diagnostic systems and therapeutic systems. They may also work with models of physiological function and prosthetics and implants. Employers opportunities include hospitals, biotechnology companies, medical equipment manufacturers, research institutes and government health departments.

Environmental Engineering

Environmental engineering has developed as a distinct stream of the engineering profession, and is a multifaceted, challenging and dynamic profession. Environmental engineers consider the environment at the design stage of project development. They predict the effect of human activities on the environment, use their design skills to minimise environmental impact, and promote sustainable development. The challenge for graduates is to create innovative solutions to problems. As the basis for a sustainable future, these solutions must satisfy...
strict new legislation, be cost effective in the longer term and be acceptable to the public. This major combines a knowledge of process engineering, design methods, ecological processes and life sciences with economics and communication skills. It involves the study of engineering principles, economics, law, social impact, occupational health, toxicology and the sciences of biology, chemistry and ecology. A key focus is cleaner production through the minimisation, control and treatment of wastes associated with modern society. The major also emphasises the consideration of environmental, ecological and social issues within the design, operation and management of industrial processes.

Environmental engineers work with consulting engineers and processing companies both in Australia and overseas. Graduates are also employed by government departments and agencies.

Materials Engineering
Materials engineering is concerned with the selection, processing and development of materials to design and make products. Materials – metals, alloys, ceramics, polymers and composites – give manufactured products their functionality and aesthetic qualities.

Materials engineers apply their knowledge of materials behaviour to optimise processing and improve the properties of products. They are also involved in controlling the service behaviour of materials; improving the performance of machines and structures. Major technological advances in recent years have extended career opportunities, with developments in light weight composites; high temperature materials; surface treatments; and materials with special electrical, optical and magnetic properties.

This major covers core engineering science, materials design, and properties and use of materials in manufactured articles. It is not available as an extended major, but can be taken with a minor in mechanical engineering, extractive metallurgy or chemical engineering.

Mechanical Engineering
Mechanical engineers design and manufacture power plants, machinery and equipment for industry, and are experts in producing energy and converting it to other forms. They work closely with industrial engineers and managers in many fields to design innovative machinery and systems that yield economies in production. They may design turbines, earthmoving machinery, food processors, airconditioning and refrigeration systems, artificial hearts and limbs, and engines for aircrafts or automobiles. The demand for mechanical engineers is increasingly broad, as new industries emerge, and old industries take advantage of automation developments and new sources of energy.

This major offers core courses in design, mathematics, modelling, computing, management and engineering science. Electives in later years allow students to pursue individual career options. Principal study topics are fluid mechanics; thermodynamics and heat transfer; solid mechanics; manufacturing; energy systems; dynamics and control. Minors are available in materials engineering, minerals process engineering or mining engineering.

Mechanical engineers work in a range of areas, from very large mining, refining, construction and manufacturing companies to small or self-owned companies. Graduates are also employed by government departments, private building services, and consulting engineering companies.

Mechanical and Aerospace Engineering
Mechanical and Aerospace Engineering is based on the mechanical engineering program. Students can then choose to take specialised courses primarily in either the aeronautical or space area. Aerospace engineering is concerned with the design, manufacture and operation of aircraft, launch vehicles, satellites, spacecraft and ground support facilities. It is a particularly challenging discipline because of the need for light weight and extremely reliable designs. This requires students to make use of cutting-edge technology and design methods. Aerospace Engineering projects tend to be multidisciplinary in nature because of the scientific content of many of the payloads and the complex thermo-physical aspects involved in operations such as hypervelocity atmospheric flight. All workers in this field must be adept at incorporating technology from outside their immediate specialty. Graduates will be qualified as mechanical engineers and will have an understanding of key issues in the field of aerospace engineering.

Mechanical and aerospace engineering is available in the extended major only.

Mechatronic Engineering
Mechatronic engineering is one of the newest branches of engineering, and has far-reaching applications to every sector of society. Mechatronic engineers integrate precision mechanical engineering with electronics, computer systems, and advanced controls, to design and construct products and processes. Microscale sensor and actuator technologies are developed and applied to create intelligent consumer products. Mechatronic engineers are in great demand as industries seek to apply evolutionary advances in computers, electronics, sensors, and actuators to improve their products, processes and services.

This major provides a broad-based education in the basic principles of electrical, mechanical and computer engineering. A broad range of electives cover areas including engineering analysis and design; engineering mechanics; dynamics and automatic control; signals and communication; electrical hardware and computer software. Students may also undertake a minor in biomedical engineering.

Graduates have the knowledge and skills to design and build advanced products such as robots and machine tools; scientific instrumentation; and high performance automatic suspension and braking systems. Mechatronic engineers are employed by product developers and manufacturers, the mining industry, the aerospace and defence sectors, in self-owned companies and by government and industry research groups. Graduates are in demand wherever there is potential for improvement in the integration of computer and electrical hardware with mechanical systems.

Mining Engineering
Mining engineering is the extraction of valuable ores from the ground for processing and utilisation. It involves all phases of mining operations: from exploration and discovery, through feasibility, development, production, processing and marketing, to final land restoration and rehabilitation. Responsibility for the development and production phases of a mine requires a broad knowledge of all mining operations and skills in leadership and industrial relations.

This major integrates theory and practical application and involves mathematics, basic, Earth and engineering sciences. A minor is available in minerals process engineering. The unique University Experimental Mine facility, located near the St Lucia campus, is used for practical work in ventilation, Earth sciences, surveying, production engineering and safety.

Graduates are employed by mining companies, initially at the mining centre, where minerals are extracted. With experience, mining engineers progress to senior managers or technical specialists, mine inspectors and advisers to government bodies. Many are employed by international companies and gain overseas experience. Mining engineers are also employed by civil engineering companies to supervise tunnelling and open-cut operations for railways, roads, hydroelectric and sewerage works.

Software Engineering
Software engineering is the systematic approach to the development, operation, maintenance and retirement of software; the controlling element of computer-based systems. As society becomes more dependent on computers, one of the biggest challenges is the creation of new software necessary to make computers useful. Software engineering deals with the challenges associated with large-scale, high quality software: size and complexity, cooperation between developers, clients and users, and evolution of software over time to maintain its value. Software engineers use principles of computer science, engineering, design, management, psychology, sociology and other disciplines to design and manage large software systems. Team and individual projects are a focus of this plan, an approach valued by employers. Software engineers work in large multi-national companies, State and Federal government departments and agencies, and in many small, specialised and emerging companies. Career opportunities for software engineers are excellent and will remain so for the foreseeable future. Students interested in careers in the aerospace and aviation industry can now combine a full single major in software engineering with additional specialist study and project work in aerospace and aviation. Refer to separate software systems and aerospace plan entry.

Software Systems and Aerospace Engineering
Software Systems and Aerospace Engineering combines a full single major in software engineering with additional specialist study and specialist project work in the aerospace and aviation industry. Software engineering is the systematic approach to the development,
operation, maintenance and retirement of software; the controlling element of computer-based systems. Software engineering deals with the challenges associated with large-scale, high quality software. Software engineers use principles of computer science, engineering, design, management, psychology, sociology and other disciplines to design and manage large systems. In the aerospace industry, systems such as aircraft are a mixture of electronics, software and mechanical devices that need to operate at exceptional levels of safety and reliability. This plan includes a strong component of systems engineering which allows designers to describe and understand such complex systems. This program specifically equips students to work as software engineers and systems engineers in the aerospace industries – airlines, defence, airports and aircraft manufacture. The growth in Queensland’s aviation and aerospace industries continues to outpace the rest of Australia and graduates’ skills will be transferable overseas. Graduates are also equipped to work as software engineers employed in large multinational companies, government departments and agencies, and in many small, specialised consulting companies.

Career opportunities
The UQ Engineering degree is highly regarded and employment prospects are excellent. Engineers find employment as consultants in the government and in many areas of business and industry. Detailed information about employment opportunities for different engineering specialisations is found in the Engineering Prospectus (www.itee.uq.edu.au/degree_programs/BE).

Professional memberships
Graduate and student memberships of:
> Engineers Australia
> Association of Professional Engineers, Scientists and Managers Australia (APESMA)

Other memberships apply to specific engineering majors, including:
> Australasian Institute of Mining and Metallurgy (AusIMM) – Chemical and Metallurgical, Mining
> Australian Computer Society – Computer Systems and Software
> The Institution of Chemical Engineers (IChemE) – Chemical, Chemical and Metallurgical, Environmental

Dual programs
> Arts
> Biotechnology
> Business Management
> Commerce
> Economics
> Information Technology
> Science

Sample first year courses
> Applied Mechanics
> Biodiversity and Our Environment
> Calculus and Linear Algebra I
> Cells to Organisms
> Chemical Energetics and Reactivity
> Chemical Structure and Reactions
> Discrete Mathematics
> Earth Processes and Geological Materials for Engineers
> Electromagnetism, Optics, Relativity and Quantum Physics I
> Engineering Thermodynamics
> Genes, Cells and Evolution
> Introduction to Computer Systems
> Introduction to Electrical Engineering
> Introduction to Environmental Management
> Introduction to Information Systems
> Introduction to Professional Engineering
> Introduction to Software Engineering I
> Mathematical Foundations
> Multivariate Calculus and Ordinary Differential Equations
> Physical Basis of Biological Systems
> Physics and Engineering of Materials
> Principles of Molecular Biotechnology
> Sustainable Development of Resources

Additional cost
> The Senior First Aid certificate costs approximately AUD$120.
> Students who undertake vacation work, fieldwork or work experience will be required to fund their own travel and living expenses.
> Civil engineering students will need to purchase safety boots (AS2210) (up to AUD$140), hard hat (AS1801) (AUD$15) and undertake a site safety induction program (AUD$45 with group, or AUD$90 individual). (Note: AS = Australian Standard).

Contact details
International Recruitment Manager
www.uq.edu.au/international/enquiry
Phone (outside Australia) + 61 3 8676 7004
(within Australia – Free Call) 1800 671 980

BACHELOR OF Regional and Town Planning

Location St Lucia
Commencement semester 1
Duration 4 years full-time
Admission requirements Queensland Year 12 (or equivalent) English (see also pages 94-96)
Honours Available as part of standard program
Additional program information is provided in the tables on pages 84-86

Program outline
Regional and town planning assists communities, companies and governments to integrate the environmental, economic and social aspects of development from site, up to regional scales. It covers land-use planning, urban design, transport and infrastructure planning, use and extension of information technology, heritage and conservation, resource management, environmental monitoring, planning law and practice, commercial and industrial development, and policy making and implementation. Planning deals with strategic work (long-range planning) as well as structural and statutory components. The latter include the current development of the built and natural environments and the legislative framework controlling land use. Accordingly, planning is closely allied with commerce, economics, government, sociology and the ecology disciplines.

The program emphasises the application of planning theory and the development of design skills through project work. This project work varies in complexity from simple, small-scale projects to comprehensive development schemes, often in “real-life” situations in conjunction with local authorities and community organisations. The program features a core of planning courses backed by planning specialisations. A few examples of core courses are: environment and society; planning theory; environmental planning; planning practice; real estate development planning; and environmental impact assessment. In the final year, students also have a choice between writing an independent research thesis or taking further courses.

Career opportunities
Graduates find employment with local, State and Federal government departments and agencies, private consultancy firms, large land developers, and finance and investment houses concerned with property markets. Work situations range across:
> Commercial and industrial development
> Engineering and architectural applications
> Environmental monitoring
> Heritage and conservation
> Land-use planning
> Planning law and practice
> Policy making and implementation
> Regional development
> Resource management
> Statutory or strategic planning
> Tourism
> Transport and infrastructure planning
> Urban design
> Use and extension of information technology

Professional memberships
Planning Institute of Australia

Sample first year courses
> Building Construction Management and Economics
> Environment and Society
> Geographical Information and Analysis
> Human Settlements
> Integrated Planning Projects 1
> Introduction to Environmental Management
> Introduction to Information Systems
> Introduction to Planning
> Introduction to Sociology
> Introductory Microeconomics
> Local Planning, Landscape and Heritage
> Valuation Principles

Additional cost
Some courses may incur additional costs (eg, field trips)

Contact details
International Recruitment Manager
www.uq.edu.au/international/enquiry
Phone (outside Australia) + 61 3 8676 7004
(within Australia – Free Call) 1800 671 980