A project by University of Queensland graduate Dr Adrian Oehmen has been recognised as one of the best environmental science and engineering PhD studies in the world.

Adrian’s discovery of operational factors that can improve phosphorus removal in wastewater treatment systems has provided the wastewater industry with strategies that could potentially improve the performance and reduce the costs of full-scale wastewater treatment plants.

Adrian, from Canada, received the 2004 CH2M-Hill PhD Thesis Award from the Association of Environmental Engineering and Science Professors at a ceremony in Washington DC.

It was the first time in the award’s 17-year history that a student from a non-US university had won the award.

Adrian’s thesis centred on understanding the metabolisms of the microorganisms responsible for removing phosphorus from wastewater in treatment plants and their competition with other organisms.

“My work revealed potential ways to eliminate the unwanted bacteria, leading to improvements in the performance and reliability of phosphorus removal treatment systems,” he said.

Adrian, who graduated from UQ in 2005, received an International Postgraduate Research Scholarship and a UQ International Postgraduate Research Scholarship.

He is currently working on a project at the New University of Lisbon in Portugal, examining ways of removing mercury from drinking water systems.

“Due to the highly toxic and harmful nature of mercury to people and the environment, there is an increasing need to remove mercury to extremely low levels worldwide,” Adrian said.
Academic staff in the areas of Engineering, Architecture and Planning are professionals in their fields and are involved in leading research. As a result, teaching material is current, supported by world-class research and relevant to the needs of industry.

UQ is unique in Australia in combining the disciplines of geography and Geographic Information Science (GIS) with urban and regional planning, environmental management, real estate and development and project management.

It is also one of Australia’s leading institutions for architectural education and research, with a program designed to meet the changing demands of the profession.

UQ’s facilities and special features include:
- the Centre for Hypersonics, the world’s largest university-based hypersonics group
- student access to 13 branches of the UQ Library, including the dedicated Dorothy Hill Physical Sciences and Engineering Library
- an experimental mine located close to UQ St Lucia
- architecture facilities including flexible exhibition space, impressive computer teaching laboratories and studio facilities
- field and survey equipment including Global Positioning Systems (GPS)
- extensive GIS software, and
- formal industry programs involving work experience and employment opportunities to complement university studies.

Career opportunities in this discipline
Graduates in the disciplines of Engineering, Architecture and Planning contribute to all areas of industry and society, and employment prospects are excellent. Careers are available in a range of private companies and government organisations in areas such as: architecture, biomedical and pharmaceutical development, commercial development, computing and telecommunications, construction and housing, consulting, environment reserves and tourist centres development and management, environmental protection and management, manufacturing, minerals processing, mining, natural resource utilisation, power generation and transmission, product design and development, public utilities, research, satellite and spacecraft technology, software development, statutory bodies, town planning and regional development and transport.
Eligibility for visa
Unless otherwise specified, international students must undertake programs on campus at UQ on a full-time basis to be eligible to apply for an Australian student visa. See page 109 for more information.

POSTGRADUATE COURSEWORK PROGRAMS

DOCTOR OF ENGINEERING

Location St Lucia
Commencement semesters 1, 2
Application closing dates Refer to page 109
Additional program information is provided in the tables on pages 100-104
For English language proficiency requirements, please refer to page 107

Higher Doctorate
Duration 0.5 years full-time
Admission requirements Bachelor of Engineering (Honours) of not less than seven years standing OR Master of Engineering, Engineering Science or Engineering Studies of not less than three years standing OR PhD in Engineering. Students who do not obtain their degree from UQ should consult the EPSA Faculty Office (enquiries@epsa.uq.edu.au) for advice

Program outline
The degree is awarded in recognition of the candidate's substantial original and distinguished contributions to engineering knowledge. Contact the Faculty Office for information regarding publications to be submitted.

Career opportunities
As the highest academic award in engineering, the Doctor of Engineering gives formal public recognition to professional engineers and thereby enhances their authoritative standing.

Contact details
International Recruitment Manager
Email study@uq.edu.au
Phone (outside Australia) + 61 3 8676 7004
Facsimile Australia – free call 1800 671 980

GRADUATE CERTIFICATE IN GRADUATE DIPLOMA OF MASTER OF ENGINEERING

Location St Lucia
Commencement semesters 1, 2
Application closing dates Refer to page 109
Students may also undertake a research higher degree in this discipline
Additional program information is provided in the tables on pages 100-104
For English language proficiency requirements, please refer to page 107

Graduate Certificate
Duration 0.5 years full-time
Admission requirements Bachelor degree in engineering or related field. Applications on the basis of post-secondary study and two years work experience in a related field will be individually assessed

Graduate Diploma
Duration 1 year full-time
Admission requirements Bachelor degree in engineering or related field OR Graduate Certificate in Engineering. Applications on the basis of post-secondary study and two years work experience in a related field will be individually assessed

Coursework Master
Duration 1.5 years (#24) full-time. A one year (#16) program is available to students who have a four year degree in the same field
Admission requirements Bachelor degree in engineering or related field OR Graduate Diploma in Engineering

Program outline
The 21st century is an era of great global and local challenges: climate change and the greenhouse effect, clean energy, reliable water supplies, infrastructure for booming populations, sustainable resource development, efficient and effective communications, to name but a few. The DOCTOR OF ENGINEERING provides tremendous opportunities for a new generation of engineers. This is the dawn of a new engineering age where engineers are part of the solution at all scales from molecular to global. The Master of Engineering (ME) degree is offered by the Schools of Engineering, and Information Technology and Electrical Engineering. Depending on previous study, the program may be completed in one year. Several specialisations are available. Students in this program are taught by staff who are internationally recognised as leading experts in their fields, using state-of-the-art facilities.

Supplementary information
Studies are usually on a semester basis. In some cases courses may be presented in a modular short-course format, or through flexible delivery.

FIELDS OF STUDY

BIOLOGICAL ENGINEERING

Engineering combines quantitative analysis and synthesis to elucidate system design principles. Through the genomic revolution engineers can now begin to tackle biological problems using the same “measure, model, and manipulate” approach they have applied to physics and chemistry. Indeed, applying this system approach is widely recognised as essential not only for the development of innovative biotechnologies but also to yield fundamental scientific understanding of biological systems. As our ability to modify and control biological systems increases, biological processes will replace chemical and mechanical processes due to their inherent advantages of renewable resources, mild operation conditions and minimal waste problems. Early signs of the change are seen not only in the high-value pharmaceutical industry, but also in the production of bulk chemicals like lysine by fermentation and in bioloeaching of copper and gold from mineral ore. Advances in our understanding of and ability to mimic biological systems are also inspiring completely new approaches such as nanotechnology and tissue engineering, which will form the foundation of new industries of the 21st century. This graduate program is intended for graduates of biochemical and other process engineering programs, who wish to expand their skills to biological engineering. Graduates provide traditional chemical engineering industries an understanding of the opportunities offered by the biotechnology and provide emerging biotechnology companies the power of the “measure, model, and manipulate” engineering approach. Graduates are also well prepared for PhD studies in biological engineering.

CHEMICAL ENGINEERING

Chemical engineering is the design, management and optimisation of processes to turn raw products and processes into valuable products, using the latest knowledge of biology, chemistry and physics. Chemical engineers ensure economic viability while maintaining safety and environmental standards, and work at the cutting edge of fields such as molecular biology, nanomaterials and chemistry, physics, mathematics and information technology. The program rests on a background of process principles and fluid dynamics studied at the bachelor degree. Courses include process engineering dynamics, reaction engineering, bioprocess engineering, cell and tissue engineering, and particle design and processing.

CIVIL ENGINEERING

Civil engineers are experts in the planning, design, construction and maintenance of the facilities that contribute to modern life, including buildings, bridges, roads, harbours, dams, airports, coastal protection, water supply and public health. The program builds on a bachelor degree in civil engineering. Courses include mine waste management and landfill design; ground water and surface flow modelling; engineering of small buildings; and transportation systems engineering and design.

ELECTRICAL ENGINEERING

Courses cover traditional electrical areas such as power systems, electronics and signal processing, as well as more specialised areas, including biomedical, computer systems, radio frequency and microwave, software, telecommunications. Projects generally follow the research interests of staff. Current interests include power electronics; problems of power delivery in a deregulated environment; modelling of semiconductor devices; development of sensors for the mining industry; and the automated analysis of pathology slides. This broadly-based program extends graduate opportunities in telecommunications, electronics, computer hardware, control systems or power systems. Graduates are also employed by companies varying from the large and long-established to small, new start-up companies.

ELECTRICITY MARKET

The power industry is being deregulated worldwide and power engineers need a knowledge of both power engineering and market issues to provide a linkage between engineers and economists or accountants. Graduates possess these skills, and are equipped for careers in Australia and around the world. Employment opportunities exist with traditional power companies, in addition to consulting firms and government agencies providing services for the broader energy market. This is currently the only such program offered in the Asia-Pacific region. Students explore the most up-to-date knowledge through carefully designed and selected courses, and gain theoretical knowledge and hands on practical experience.

ENVIRONMENTAL ENGINEERING

The key focus of study is cleaner production through the minimisation and treatment of solid, liquid and gaseous wastes associated with modern living and modern production technologies. The program develops modelling skills and addresses environmental, ecological and social issues, including the proper use of simulation models in environmental design and management. Courses rest on a background in process principles and fluid dynamics found in engineering degrees
(chemical, civil or mining engineering). Elementary biochemistry and microbiology is also desirable, if immediate access is to be gained to some of the advanced courses. Elective courses include bioprocess engineering, advanced transport phenomena, advanced production technologies, environmental systems modelling, wastewater management, hydrology and mined land rehabilitation.

**Hyperc...**

**Materials Engineering**

Materials science and engineering is concerned with the selection, processing, understanding, development and service performance of materials. Materials engineers apply knowledge of materials behaviour to optimise processing and improve the properties and performance of products. Major technological changes have extended career opportunities, with developments in light-weight composites; high temperature materials; surface treatments; and materials with special electrical, optical and magnetic properties. The program builds on UQ’s international research strengths in materials manufacture; casting; light metals; powder metallurgy; polymer engineering; polymer processing; and the service performance of engineering materials. Materials engineering focuses on light metal alloy (aluminum, magnesium, titanium), including their industrial production, casting and other processing, and their use in manufacturing. The program boosts the careers of technical experts who need in-depth knowledge; managers who manage manufacturing operations; sales and marketing personnel; consultants and suppliers to the manufacturing industry.

**Mechanical Engineering**

Mechanical engineers work closely with industrial engineers and managers in many fields of manufacturing, designing innovative machinery and systems that yield economies in production. They also work in the automotive and aerospace industries. The demand for mechanical engineers is increasingly broad, as new industries emerge and old industries take advantage of developments in automation and new sources of energy. The program builds on undergraduate studies in mechanical engineering or related fields. Courses cover topics such as computational fluid dynamics; integrated product and process development; computational mechanics; and continuum mechanics.

**Mechatronics Engineering**

Most students enter this program with a degree in mechanical engineering or electrical/computer systems engineering, and may lack the complete background necessary for all advanced courses. First semester courses supply foundation knowledge and cover topics such as robotics, machine learning, coding and information theory, computer vision and pattern recognition, and system design. Considerable flexibility in selecting advanced courses and project topics allows students to focus on particular aspects of mechatronics.

**Minerals Process Engineering**

This field is concerned with the processing of mined material (ores) to produce concentrates or pure products. Minerals processing research at UQ is focused on comminution, flotation, hydrometallurgy and pyrometallurgy, but graduate students have access to expertise outside those specialties. The program is similar to the mineral resources program in the field of minerals processing, with minor differences in the selection of courses. Students with a science background may find the mineral resources program more suitable.

**Mining Engineering**

The School of Engineering, through mining and minerals process engineering, has a long and close association with the minerals industry in teaching and research. Mining research at UQ is focused on mine planning and safety; spontaneous combustion; ventilation; and virtual reality mine modelling. Graduate students also have access to expertise outside these specialties. Courses include topics such as advanced process control, excavation engineering; rock mechanics; geomechanics; tailings management; blast engineering; mine ventilation; mining environment management; and mining evaluation economics. Students choose project topics in consultation with academic advisors and prospective project supervisors.

**Software Engineering**

This program complements the field of computer systems engineering and allows undergraduate electrical engineering graduates to concentrate on advanced software applications rather than hardware. This program consists of an extensive menu of intermediate and advanced level courses. Job opportunities are widespread, as society comes to rely more and more on computer technology. Graduates find work in large multinational companies; state and federal government departments; and in many small, specialised and emerging companies.

**Systems Engineering**

The systems on which the world depends are becoming increasingly complex as the world becomes more interconnected. Systems engineering is the discipline of building highly sophisticated systems that work successfully. It is about the key creative processes that transform concepts into system designs; and the key technological and management processes, enabling system development to proceed in an orderly, interdisciplinary fashion, maximising opportunities to meet customer needs while minimising risk. The program is modelled on the Boeing masters program conducted in the USA and includes a wide choice of electives. Many courses are offered in flexible delivery modes aimed at professionals interested in upgrading or updating their qualifications. A range of specialist electives is available.

**Wastewater Management**

This suite of programs is offered through the Advanced Wastewater Management Centre (AWMC), a leading worldwide research centre in wastewater management. Established in 1996, the AWMC has grown rapidly with funding from the University, research agencies like cooperative research centres, and industry. The AWMC undertakes research and consultancy projects in the area of water/wastewater treatment and management. The program specifically targets people working in this specialist area. The program is available only in external mode, by means of web-based delivery. Many students enrol part-time while continuing full-time employment. Courses typically include assignments and may be examined by closed book examination centres worldwide. Tutors and discussion groups offer excellent networking and knowledge-sharing opportunities.

**Career opportunities**

Graduates have acquired experience that enables them to cross disciplinary boundaries, and are equipped to take on advanced engineering work. They will have a combination of business problem solving and interpersonal skills, as well as technical engineering experience that will enable them to understand markets and develop relationships of trust with customers, suppliers, business partners, and to work within teams.

**Professional memberships**

Graduates may be eligible for membership with Engineers Australia, Australian Computer Society (ME (Computer Systems) and ME (Software)).

**Additional costs**

Students who undertake fieldwork will be required to fund their own travel and living expenses. Civil engineering students will need to purchase safety boots ($AS3310) up to $140), hard hat (AS1801)($15) and undertake a safety induction program ($40 with group or $80 individual). Note: AS = Australian Standard.

**Contact details**

International Recruitment Manager
Email study@uq.edu.au
Phone (outside Australia) + 61 3 8676 7004
within Australia – free call 1800 671 980

**GRADUATE CERTIFICATE IN GRADUATE DIPLOMA OF MASTER OF Magnetic Resonance Technology**

Location St Lucia. An option exists to study this program in external mode from the home country; a student visa is not required.

**Commencement semesters 1, 2**

**Application closing dates**

Refer to page 109

**Students may also undertake a research higher degree in this discipline**

Additional program information is provided in the tables on pages 100-104

**For English language proficiency requirements, please refer to page 107**

**Graduate Certificate**

**Duration** 0.5 years full-time

**Admission requirements** Bachelor degree in radiology or related field. Applications on the basis of post-secondary study and various years work experience in a related field will be individually assessed.

**Graduate Diploma**

**Duration** 1 year full-time

**Admission requirements** Bachelor degree in radiology or related field OR Graduate Certificate in Magnetic Resonance Technology in Australia or on the basis of post-secondary study and two years work experience in a related field will be individually assessed.
Coursework Master
Duration 1.5 years full-time
Admission requirements Bachelor degree in engineering, science or related field. Applicants on the basis of post-secondary study and two years work experience in a related field will be individually assessed.

Graduate Diploma
Duration 1 year full-time
Admission requirements Bachelor degree in engineering, science or related field OR Graduate Certificate in Mineral Resources. Applications on the basis of post-secondary study and two years work experience in a related field will be individually assessed.

Coursework Master
Duration 1.5 years full-time
Admission requirements Bachelor degree in engineering, science or related field OR Graduate Diploma in Mineral Resources.

Program outline
This program enables graduates to obtain an advanced knowledge in specialist plans related to the minerals industry. Students gain analytical skills that enable critical assessment of alternative solutions to complex industry problems. Graduates are equipped with an understanding of particular sections of the industry, and focus on investigating and resolving design and operational problems in a safe and efficient manner. The Master of Mineral Resources provides professional postgraduate education in areas that impact directly upon the efficient technical, scientific and commercial management of the minerals industry.

Supplementary information
Courses are offered by short intensive modules, application exercises, and projects. In certain plans, courses are offered in a web-based delivery mode, enabling international students to take the courses in their home countries. Students may need hardware/software required for access to the internet. Some courses are offered only once each year, or in some years not at all. Students should enquire about the availability of courses early in the application process, and well before committing to travel to Brisbane.

Fields of study
Environment (offered in external mode)
Never has there been more pressure for an environmentally responsible and sustainable mining industry. Today’s best practice requires skilled mining professionals who can implement totally integrated environmental management plans.

Minerals Industry Risk Management (offered in external mode)
This program serves specific training needs in the mining industry, and is conducted by the Minerals Industry Safety and Health Centre, a member of the Sustainable Minerals Institute. Personnel associated with the global minerals industry gain advanced knowledge in the area of safety, health, environment, risk management and risk analysis. The program is technically comprehensive and equips students with an understanding of the concepts and issues connected to minerals industry risk management, and the skills to implement good practice in their operations. Courses use flexible learning techniques, and are offered at least once each year, both internally and externally in intensive delivery mode, which do not always correspond to standard semesters.

Minerals Processing (offered in internal mode)
This program supplies specialist training to mining engineers, with an undergraduate engineering degree and experience in the mining industry. Most courses are offered in intensive delivery mode, which do not always correspond to standard semesters. Students are advised to seek advice about course availability early in the application process, particularly before committing to travelling to Brisbane.

Professional memberships
Graduates of this degree may be eligible for membership with: Australian Institute of Radiographers (AIR) Students pursuing MRI accreditation from AIR are offered assistance with practical scanning access, allowing accumulation of patient numbers. The programs attract Continuing Professional Development (CPD) points from the AIR and also count towards Level 2 Accreditation in MRI.

Additional cost
Students must have hardware/software required for access to the world wide web.

Contact details
International Recruitment Manager
Email study@uq.edu.au
Phone (outside Australia) + 61 3 8676 7004 (within Australia – free call) 1800 671 980

GRADUATE CERTIFICATE IN GRADUATE DIPLOMA OF MASTER OF MINERAL RESOURCES
Location St Lucia
Commencement semesters 1, 2
Application closing dates Refer to page 109 Students may also undertake a research higher degree in this discipline
Additional program information is provided in the tables on pages 100-104
For English language proficiency requirements, please refer to page 107
Graduate Certificate
Duration 0.5 years full-time

Admission requirements Bachelor degree in engineering, science or related field. Applications on the basis of post-secondary study and two years work experience in a related field will be individually assessed.

Graduate Diploma
Duration 1 year full-time
Admission requirements Bachelor degree in engineering, science or related field OR Graduate Certificate in Mineral Resources. Applications on the basis of post-secondary study and two years work experience in a related field will be individually assessed.

Coursework Master
Duration 1.5 years full-time
Admission requirements Bachelor degree in engineering, science or related field OR Graduate Diploma in Mineral Resources.

Program outline
This program develops necessary skills in resolving design and operational problems in a safe and efficient manner. The Master of Mineral Resources provides professional postgraduate education in areas that impact directly upon the efficient technical, scientific and commercial management of the minerals industry.

Supplementary information
Courses are offered by short intensive modules, application exercises, and projects. In certain plans, courses are offered in a web-based delivery mode, enabling international students to take the courses in their home countries. Students may need hardware/software required for access to the internet. Some courses are offered only once each year, or in some years not at all. Students should enquire about the availability of courses early in the application process, and well before committing to travel to Brisbane.

Fields of study
Environment (offered in external mode)
Never has there been more pressure for an environmentally responsible and sustainable mining industry. Today’s best practice requires skilled mining professionals who can implement totally integrated environmental management plans.

Minerals Industry Risk Management (offered in external mode)
This program serves specific training needs in the mining industry, and is conducted by the Minerals Industry Safety and Health Centre, a member of the Sustainable Minerals Institute. Personnel associated with the global minerals industry gain advanced knowledge in the area of safety, health, environment, risk management and risk analysis. The program is technically comprehensive and equips students with an understanding of the concepts and issues connected to minerals industry risk management, and the skills to implement good practice in their operations. Courses use flexible learning techniques, and are offered at least once each year, both internally and externally in intensive delivery mode, which do not always correspond to standard semesters.

Minerals Processing (offered in internal mode)
This program supplies specialist training to mining engineers, with an undergraduate engineering degree and experience in the mining industry. Most courses are offered in intensive delivery mode, which do not always correspond to standard semesters. Students are advised to seek advice about course availability early in the application process, particularly before committing to travelling to Brisbane.

Career opportunities
These programs encompass the range of mineral and petroleum exploration activities. Industry recognises the need for resource exploration and development professionals to keep up with modern developments in the science. Each area is coordinated by a principal supervisor with an applied research background, and also involves industry associates. Candidates can follow either a broad stream entirely within the scheduled subjects or may follow specialist streams of geophysics or geochemistry to enhance employment opportunities.

Professional memberships
Graduates of this degree may be eligible for membership with the Geological Society of Australia, the Australian Institute of Geoscientists (AIG), the Australian Society of Exploration Geophysicists, and the Society of Exploration Geophysicists.

Additional cost
Students who undertake fieldwork will be required to fund their own travel and living expenses.
GRADUATE CERTIFICATE IN GRADUATE DIPLOMA OF MASTER OF Regional Development

Location St Lucia
Commencement semesters 1, 2
Application closing date Refer to page 109
Students may also undertake a research higher degree in this discipline
Additional program information is provided in the tables on pages 100-104
For English language proficiency requirements, please refer to page 107
Graduate Certificate
Duration 0.5 years full-time
Admission requirements Bachelor degree in any field. Applications on the basis of post-secondary study and two years work experience in a related field will be individually assessed
Graduate Diploma
Duration 1 year full-time
Admission requirements Bachelor degree in any field OR Graduate Certificate in Regional Development. Applications on the basis of post-secondary study and two years work experience in a related field will be individually assessed
Coursework Master
Duration 1.5 years full-time
Admission requirements Bachelor degree in any field OR Graduate Diploma in Regional Development
Program outline
Regional development is the study of regions and processes of regional change. The postgraduate programs in regional development encourage the creation of tools, methods and theories of regional analysis, from concepts and techniques of component disciplines such as economics, geography, government, sociology, engineering, agriculture, regional and town planning; and environmental science. Graduates possess a theoretical and applied knowledge of regional, political and planning issues, allowing work in central government, regional organisations, private consultancies, or as a prelude to higher degree studies.
Supplementary information
The majority of courses are offered late afternoon/early evening.
Career opportunities
Graduates of this program find employment in local, state and federal governments or private consulting companies.
Professional memberships
Graduates of this degree may be eligible for membership with: Planning Institute of Australia (PIA).
Additional cost
Some courses may incur additional fees (eg, field trips).
Contact details
International Recruitment Manager
Email study@uq.edu.au
Phone (outside Australia) + 61 3 8676 7004 (within Australia – free call) 1800 671 980

GRADUATE CERTIFICATE IN GRADUATE DIPLOMA OF MASTER OF Urban and Regional Planning

Location St Lucia
Commencement semester 1
Application closing date Refer to page 109
Students may also undertake a research higher degree in this discipline
Additional program information is provided in the tables on pages 100-104
For English language proficiency requirements, please refer to page 107
Graduate Certificate
Duration 0.5 years full-time
Admission requirements Bachelor degree in anthropology, geography, sociology, architecture, engineering, law or related field. Applications on the basis of post-secondary study and two years work experience in a related field will be individually assessed
Graduate Diploma
Duration 1 year full-time
Admission requirements Bachelor degree in anthropology, geography, sociology, architecture, engineering, law or related field OR Graduate Certificate in Urban and Regional Planning. Applications on the basis of post-secondary study and two years work experience in a related field will be individually assessed
Coursework Master
Duration 1.5 years full-time
Admission requirements Bachelor degree in anthropology, geography, sociology, architecture, engineering, law or related field OR Graduate Diploma/Certificate in Urban and Regional Planning
Program outline
Urban and regional planning is about improving the quality of cities and regions. Professional planners assist communities, companies and governments to integrate the environmental, economic and social aspects of development from small sites up to whole regions. Planning deals with strategic work (long-range planning) as well as structural and statutory components in relation to built and natural environments and the legislative framework controlling land use. Accordingly, planning is closely allied with commerce, government, sociology, communities and the ecology disciplines. The Master of Urban and Regional Planning was the first masters level program in Queensland to be recognised by the Planning Institute of Australia (PIA). It produces professionally competent graduates, familiar with the concepts, ideas and techniques of planning. Courses typically emphasise the acquisition of skills through small scale exercises or practical project work but fits these within a wider intellectual framework of design and public policy. Opportunities are available for a research investigation through an advanced research project; and there is an elective which enables some specialisation.
Supplementary information
The majority of courses are offered late afternoon/early evening.