Getting the most out of your network connection
Further work Testing at 10Gbps on the AARNet network

Tim Rayner
ACT Regional Network Manager
AARNet

QUESTnet 2009
Gold Coast, July 9th 2009

Contents

- The End-to-End Performance Problem
- AARNet member examples
- Limiting factors
- 10 Gbps Test Kit
- Measurement tools – Iperf and NDT
- Test Results
- Future work
End to End performance

• The symptom:
 – I’m not getting the throughput I expect
 – Issues increase with latency
• AARNet provides long, thick pipes: 1Gbps, 10Gbps optical PtP & A3
 – Generally un-congested – people understand congestion & are forgiving!
• Customer examples:
 – 300 km 1Gbps optical circuit -> achieve 150 Mbps
 – Group in one Uni accessing a research centre at another – 2Mbps
 – 20ms RTT 1Gbps optical circuit apps are slower than 4ms 34 Mbps uWave.
 – 1 Mbps across optical circuit

Survey: Real World Best Performance?

• What’s the best performance you’ve received for real-world tasks?
 – 1. < 20 Mbps
 – 2. 20 – 80 Mbps
 – 3. 80 – 250 Mbps
 – 4. 250 Mbps – 900 Mbps
 – 5. 900 Mbps – 1.5 Gbps
 – 6. > 1.5 Gbps
 – 7. Unknown
Survey: Latency

- What is the maximum RTT latency you experience between campuses of your institution?
 - 1. < 1 ms
 - 2. 1 – 5 ms
 - 3. 5 – 20 ms
 - 4. 20 – 80 ms
 - 5. 80 – 300 ms
 - 6. > 300 ms

Limiting Factors – non Network

- System BUS speeds:
 - Standard PCI 33 MHz, 32 bit: 500 – 1000 Mbps
 - PCI-X 133MHz, 64 bit: 6 – 8 Gbps
 - PCI-Express1.0 2.5 Gbps x8 channels: 20 Gbps
 - PCI-Express2.0 5.0 Gbps x8 channels: 40 Gbps

- Storage Speeds:
 - SATA: 1.5 Gbps, 3.0 Gbps
 - Individual Disks significantly slower
 - Fibre Channel SAN: 1,2,4,8 Gbps

- Conclusion: We need memory – memory transfers across PCI-e x8 to approach 10 Gbps
Limiting Factors: Network

• Host based:
 - TCP stack tuning – good for linux kernel >= 2.6.18
 - TCP Window scaling – Max. window size >= Bandwidth x RTT
 • Linux: net.ipv4.tcp_rmem & net.ipv4.tcp_wmem in /etc/sysctl.conf
 – Set last parameter to large size (eg. 150 Mbytes)
 - Fast enough CPU

• Network based:
 - MTU: 9000 Byte Jumbos, rather than standard 1500 Bytes
 • Tracepath – like traceroute, but reports Path MTU to each hop
 - Expect busier CPUs at 1500 Bytes. 3.7Gbps vs. 5.6Gbps UDP iperf
 - Make sure every step has jumbos enabled – physical i/f and vlans
 - Testing to uHawaii – 9000 Bytes one direction, 1500 other direction

Test Locations:

• Canberra & Perth: 45ms RTT
Test Locations:

- Canberra to uHawaii - RTT: 99ms

Test Kit: details

- Last year:
 - 1RU Acer 2.0GHz Intel Xeon servers with CentOS5
 - 3 Gbps with standard kernel (2.6.18)
 - 6 Gbps with custom kernel 2.6.24
 - Updated myri10ge drivers improved performance & stopped hangs
 - 3.16GHz desktop E8500 approached 10 Gbps
 - Got fastest available Xeon at 3.16 GHz – gave 9.8 Gbps without being cpu limited.
 - Servers were expensive, and not very portable
 - Exclusively used the myricom cards with LR singlemode XFP optics
Test kit: Last year Acer R520 & DIY system

Test Kit: cards – myricom XFP & intel dual SFP+
Test Kit: New server details

- Tried new intel core-i7 processors when newly released
 - Best performance yet with the slower 2.67 GHz.
 - $500 processor getting wirespeed – faster version was 4 x price
 - System price around $1600, plus card at $695 + $900 US
- Buy as small a system as possible with same processor
 - System ordered
 - Delays expected – “If you change to processor … we can deliver”
 - In the end delivered with new technology 2.13 GHz Xeon
 - Client results disappointed a little. – 8, 7.5, 6.5 Gbps as sender
 - Performed well as server – up to wirespeed

Test Kit: New servers: core i7 & small 1RU
Measurement tool: iperf

- Memory to memory transfers
- Lots of options – option order is important.
- Command line clients/servers for range of operating systems
 - Linux, windows, OSX & other unix.
- Supports TCP and UDP
- Don’t set manual TCP windows – disables window auto-scaling
- Conventional wisdom: use UDP
 - Bypasses any TCP tuning/buffering issues. – congestion risk.
 - Need undocumented –l option to set jumbo datagram size
 - Don’t do it! – tune your TCP stack for better results & side-step congestion.

10Gbps Test Results
Iperf examples: TCP

```
Client connecting to 10.10.10.81, TCP port 5601
TCP window size: 24.7 KByte (default)
```

```
[3] local 10.10.10.80 port 35247 connected with 10.10.10.81 port 5601
  3.0 1.0 sec 1.15 GBytes 9.90 Gbits/sec
[3] 1.0 2.0 sec 1.15 GBytes 9.88 Gbits/sec
[3] 2.0 3.0 sec 1.15 GBytes 9.88 Gbits/sec
[3] 3.0 4.0 sec 1.15 GBytes 9.88 Gbits/sec
[3] 4.0 5.0 sec 1.15 GBytes 9.88 Gbits/sec
[3] 5.0 6.0 sec 1.15 GBytes 9.88 Gbits/sec
[3] 6.0 7.0 sec 1.15 GBytes 9.88 Gbits/sec
[3] 7.0 8.0 sec 1.15 GBytes 9.88 Gbits/sec
[3] 8.0 9.0 sec 1.15 GBytes 9.88 Gbits/sec
```

```
Iperf Example: UDP

```
Client connecting to 10.10.10.81, UDP port 56001
UDP buffer size: 189 KByte (default)
```

```
[3] local 10.10.10.80 port 35247 connected with 10.10.10.81 port 56001
 3.0 1.0 sec 778 MBytes 6.52 Gbits/sec
[3] 1.0 2.0 sec 778 MBytes 6.52 Gbits/sec
[3] 2.0 3.0 sec 778 MBytes 6.52 Gbits/sec
[3] 3.0 4.0 sec 778 MBytes 6.52 Gbits/sec
[3] 4.0 5.0 sec 778 MBytes 6.52 Gbits/sec
[3] 5.0 6.0 sec 778 MBytes 6.52 Gbits/sec
[3] 6.0 7.0 sec 778 MBytes 6.52 Gbits/sec
[3] 7.0 8.0 sec 778 MBytes 6.52 Gbits/sec
[3] 8.0 9.0 sec 778 MBytes 6.52 Gbits/sec
[3] 9.0 10.0 sec 778 MBytes 6.52 Gbits/sec
```

```
Iperf Example: UDP

```
Server listening on UDP port 56001
Receiving 0/0 byte datagrams
UDP buffer size: 189 KByte (default)
```

```
[3] 10.10.10.80 port 35247 connected with 10.10.10.81 port 56001
  3.0 1.0 sec 6.58 GBytes 5.58 Gbits/sec
[3] 0.0-10.0 sec 6.58 Gbytes 5.58 Gbits/sec 0.810 ms 1180/989887 (14)
```

```
Iperf Example: UDP

```
Server listening on UDP port 56001
Receiving 0/0 byte datagrams
UDP buffer size: 189 KByte (default)
```

```
[3] 0.0-10.0 sec 6.58 Gbytes 5.58 Gbits/sec 0.810 ms 1180/989887 (14)
[3] 0.0-10.0 sec 1 datagrams received out of order
```
Test Results

- Canberra to Perth
  - Proved last year over prototype A3 10Gbps customer cpe connection
  - Proved this year over NCN VPLS service
    - Canberra, Perth and Sydney servers on the same subnet
    - Rate limits tripped me up when trying to reproduce results

- Trans-Pacific
  - Did some iperf tests with uHawaii across 10Gbps SX-Transport North
  - 99ms RTT
  - Good Acer R520 in Canberra, myricom card
  - Less capable server in Hawaii, with myricom card
  - Consistent results > 5Gbps Canberra -> Hawaii
  - Highly variable results Hawaii – Canberra. 1.5 or 3 Gbps most times, but one time 8 Gbps
  - Results no better with netperf or nuttcp
  - CPU limited results can be highly variable
    - sometimes “in the groove” – 8 Gbps on one occasion
**Measurement Tool: NDT**

- Client side is simple - just needs a Java enabled browser
- Command-line client is available
- Server side more complicated – web100 linux kernel required
  - Packet sniffing used to measure packet arrival times
  - Confused by optimised network drivers – packets arrive together
- Attempts connections and 10 second each-way transfer
- Uses heuristics to report duplex issues, NAT, firewalling, constraining network connection
- Designed to help end users self-diagnose problems & provide evidence to a NOC team
- Heuristics can be inaccurate – eg Link speed, Middlebox MSS.

**NDT Interface**

ARNet Web100 based Network Diagnostic Tool (NDT)
Located at Canberra, ACT, Australia: 1000 Mbps (Gigabit Ethernet) network connection
This java applet was developed to test the reliability and operational status of your desktop computer and network connection. It does this by sending data between your computer and this remote NDT server. These tests will determine:
- The slowest link in the end to end path (Downlink to 10 Gbps Ethernet/JOC-192)
- The Ethernet duplex setting (full or half)
- If congestion is limiting end-to-end throughput.

It can also identify 2 serious error conditions:
- Duplex mismatch
- Excessive packet loss due to faulty cables.

A test takes about 20 seconds. Click on "start" to begin.

TCP/Web100 Network Diagnostic Tool v5.5.4b
click START to begin

** Starting test 1 of 1 **
Connected to: 202.158.221.8 — Using IPv4 address
Checking for Middleboxes.......................... Done
clicking for firewalls.............................. Done
running 10s outbound test |client-to-server [C2S]|........... 937.73Mbs
running 10s inbound test |server-to-client [S2C]|........... 938.08Mbs
The slowest link in the end-to-end path is a 10 Gbps 10 Gigabit Ethernet/JOC-192 subnetwork

A test takes about 20 seconds. Click on "start" to begin.
NDT details

Further work

- Get a tuned iperf server booting as a liveCD or thumbdrive
- Same for an NDT server – more difficult – kernel & Java work
- Explore newer OS – Fedora11 – squeeze more from hardware
- Explore options for iperf servers on customer cpe servers
- Explore a permanent production AARNet NDT server
- Do some high performance real-world storage tests.
  - New aarnet mirror will has 10 Gbps connection, and primed Flash cache. Preliminary aggregate 3.4 Gbps with F11 ISOs.
  - May bypass storage speed limitations.
- Assist customers experiencing end2end throughput issues
- We’re keen to learn more & help - contact: noc@aarnet.edu.au.
Links

- IPERF – http://iperf.sourceforge.net/
- NDT - http://e2epi.internet2.edu/ndt/
- Internet2 Performance Workshops
- Search “TCP Performance Tuning” for your favorite OS

Questions?

Tim Rayner
Tim.Rayner@aarnet.edu.au

QUESTnet 2009
Gold Coast, July 9th 2009