Where Have the Middle-Wage Workers Gone?
A Study of Polarization Using Panel Data

Guido Matias Cortes*
University of British Columbia
November 12, 2011
JOB MARKET PAPER

Abstract

Using a general equilibrium model with endogenous sorting of workers into occupations based on comparative advantage, this paper derives the effects of routine-biased technical change on occupational transition patterns and wage changes of individual workers. These predictions are then tested using data from the Panel Study of Income Dynamics (PSID) from 1976 to 2007. Consistent with the predictions of the model, occupational mobility patterns of routine workers show strong evidence of selection on ability. Workers of relatively high (low) ability are more likely to switch to non-routine cognitive (non-routine manual) occupations. Also consistent with the predictions of the model, there has been a significant increase in the relative wage premium in non-routine occupations. Workers staying in routine jobs therefore perform significantly worse in terms of wage growth than workers staying in any other type of occupation. Switchers from routine to non-routine manual jobs have significantly lower wage growth than stayers over horizons of up to two years, while those who switch to non-routine cognitive jobs have significantly higher wage growth than stayers over a variety of time horizons.

*Department of Economics, University of British Columbia, 997-1873 East Mall, Vancouver, BC V6T 1Z1, Canada. E-mail: guidock@interchange.ubc.ca. I am grateful to Giovanni Gallipoli, Nicole Fortin, David Green and Thomas Lemieux for their support and guidance. I also thank participants at the UBC Empirical Lunch and the CEA Conference (2011) for their helpful comments. Financial support from CLSRN is gratefully acknowledged.
1 Introduction

Since the late 1980s, the labor market in the United States and other developed countries has become increasingly polarized. The share of employment in high-skill, high-wage occupations and in low-skill, low-wage occupations has been increasing relative to the share in occupations in the middle of the distribution. At the same time, wages have grown faster at the top and the bottom of the distribution than in the middle sections (Acemoglu and Autor (2011), Dustmann, Ludsteck, and Schönberg (2009), Goos, Manning, and Salomons (2009)).

Pioneering work by Autor, Levy, and Murnane (2003), Autor, Katz, and Kearney (2006) and Goos and Manning (2007) has linked the polarization phenomenon to the occupational structure of the economy, and in particular the task content of different occupations. Workers in the middle of the wage distribution tend to be concentrated in occupations with a high content of routine tasks, as measured by the information in the Dictionary of Occupational Titles (DOT). At the same time, technological changes occurring since the 1980s have resulted in the creation of capital, such as machines and computers, that can perform mainly routine tasks and can therefore substitute for workers in occupations with a high routine task content. This is the hypothesis of ‘routinization’ or routine-biased technical change (RBTC).

In this paper, I investigate the implications of routine-biased technical change within the context of a general equilibrium model with endogenous sorting of workers into occupations based on comparative advantage. The novel aspect of the paper is the focus on the individual-level predictions in terms of occupational switching patterns and wage changes. The paper’s main contributions are to formalize these individual-level predictions, and to test them using data from the Panel Study of Income Dynamics (PSID) from 1976 to 2007. To the best of my knowledge, the paper is the first to directly use individual-level panel data to study the labor market experience of routine workers in the U.S. over the past three decades, thus shedding light on what has happened to these workers over time.

The approach taken in this paper provides micro-level evidence on the dynamics underlying the aggregate patterns of employment and wage polarization, and on the way in which particular subsets of workers have been impacted by routinization.

The occupational sorting mechanism featured in the model used in this paper follows Gibbons, Katz, Lemieux, and Parent (2005). Unlike Acemoglu and Autor (2011), and following Jung and Mercenier (2010), the model economy is composed of three distinct occupations (non-routine manual, routine, and non-routine cognitive) and a continuum of workers differentiated according to their skill level. Capital is modeled as suggested by Autor, Levy, and

1Employment share polarization has also been documented at a sub-national level for the state of California in Milkman and Dwyer (2002). Their work also highlights differences in the patterns observed across metropolitan areas within the state.

2A common assumption has been that most of these workers have been displaced into low-skill jobs (e.g. Acemoglu and Autor (2011), p.64), but there has been little evidence put forth to support this claim.

3See also Costinot and Vogel (2010) for a model with a continuum of skills and a continuum of tasks.
Murnane (2003): it enters the production function as a substitute for labor working in routine tasks, and a complement for workers in non-routine cognitive tasks.

I derive the model’s predictions for the effects of routine-biased technical change (RBTC). RBTC is modeled as an exogenous increase in the use of physical capital (due, for example, to a fall in the cost of computing power).\(^4\) The model makes the following predictions: RBTC induces workers at the bottom of the ability distribution within routine occupations to switch to non-routine manual jobs, while inducing those at the top end to switch to non-routine cognitive jobs. The model also makes predictions in terms of the changes in occupational wage premia. The wage premium in routine occupations is predicted to fall relative to that in the two non-routine occupational categories. For this reason, workers staying in routine jobs experience a fall in wages, relative to those staying in either non-routine manual or non-routine cognitive jobs. Workers who switch from routine to non-routine manual jobs experience a fall in wages. Workers who switch from routine to non-routine cognitive jobs experience an increase in wages, relative to those staying in the routine occupation. The model and its predictions can be generalized (in expectations) to a setting with two-dimensional skills.\(^5\)

To test the predictions of the model for individual workers, the paper uses data from the Panel Study of Income Dynamics (PSID). The PSID tracks individuals over time, making it possible to document the likelihood of transitions between different types of jobs, and to analyze the wage profiles for workers with different labor market experiences. Occupations are grouped based on an aggregation of 3-digit occupation codes into the three categories used in the model: non-routine manual (service occupations), routine (sales, clerical, craftsmen, foremen, operatives, laborers), and non-routine cognitive (professional and managerial occupations).\(^6\)

The empirical strategy involves the estimation of a wage equation derived from the model. An individual worker’s potential wage in each occupation consists of an occupation-specific premium (common to all workers in the same occupation in a given year), as well as an occupation-specific return to the worker’s skills. Skills are allowed to contain both observable and unobservable components. Workers select into the occupation where their potential wage is highest. The key identifying assumptions for the estimation of the wage equation are that unobservable skills are time-invariant, workers have full information about their skills, and any idiosyncratic temporary shocks to individual wages are independent of sectoral choice. Under these assumptions, conditional on observable and unobservable skills and the occupational wage premia, selection into occupations is random. Unobservable skills cannot be controlled

\(^4\)This is the conception of capital that has been used as an explanation for employment and wage polarization (Acemoglu and Autor, 2011). See Nordhaus (2007) for evidence on the fall in the cost of computing power, and Bartel et al. (2007) on firm-level evidence on the effects of IT adoption on firms’ skill requirements and human resource practices.

\(^5\)This extension is presented in Appendix B. See also Yamaguchi (Forthcoming) for a model with two-dimensional skills.

\(^6\)Full details of the occupations included in each of the categories are given in Appendix Table 10.
for through an individual fixed effect, as their return varies across occupations. An occupation spell fixed effect (interaction of an individual fixed effect with an occupation dummy) does control for the unobserved component (both the skill level and the return to skills), and ensures consistency of the estimated coefficients.

In order to identify changes over time in the occupational wage premia the estimation includes interactions of occupation and year fixed effects. Meanwhile, the estimated occupation spell fixed effects can be used to rank workers according to ability. These estimated fixed effects combine information on skills and returns, conditional on selecting into a particular occupation. Due to the fact that returns are common for all individuals in a given occupation at a given time, the ranking of workers within occupation-year cells according to their estimated fixed effects corresponds to their ranking according to their underlying ability. The empirical strategy may be extended to allow for changes over time in the return to education and the empirical results are robust to this extension.7

In terms of switching patterns, I find that more than 80% of workers switching out of routine occupations go to non-routine cognitive jobs, with the rest going to non-routine manual ones. Routine workers from all ability quintiles are more likely to go to non-routine cognitive than to non-routine manual jobs. After 1990 there is an increase in the exit rates for all ability groups, particularly for those at the bottom end of the distribution. Consistent with the predictions of the model, there is strong evidence of selection on ability for workers switching out of routine jobs: Low ability routine workers are more likely to switch to non-routine manual jobs, while high ability routine workers are more likely to switch to non-routine cognitive jobs.

Workers staying in routine jobs perform significantly worse in terms of wage growth than workers staying in any other type of occupation. The wage premium for routine occupations is estimated to have fallen by 17% from 1976 to the mid-2000s, relative to the wage premium for non-routine manual occupations (14% when taking account of changing returns to education). Meanwhile, over the same time period, the wage premium for non-routine cognitive occupations is estimated to have risen by 25% (7% when taking account of changing returns to education) relative to the wage premium for non-routine manual occupations.

There are also significant differences in wage growth between routine workers who stay or switch to other occupations: Those who switch to non-routine manual jobs have significantly lower wage growth than stayers over short to medium-run horizons (around 14% lower over a two-year period). Meanwhile, those who switch to non-routine cognitive ones have significantly higher wage growth than stayers over a variety of time horizons (6 to 12% higher over a two-year period).

The findings in this paper contribute to the literature that studies the effects of technology on the labor market. Technology has long been thought of as a potential driver of changes in

7See Appendix C.
the economy’s employment and wage structure. A large literature has thought of technological change as being skill-biased, in the sense that it has disproportionately favored high-skilled workers (Juhn, Murphy, and Pierce (1993), Murphy and Welch (1993), Katz and Autor (1999), Berman, Bound, and Machin (1998)). In line with what Acemoglu and Autor (2011) call the ‘canonical’ model of the labor market, this literature mostly considers two types of workers (high and low skilled) performing distinct and imperfectly substitutable tasks. Empirically, the focus of this literature has been on the evolution of the college wage premium (with college education used as a proxy for skills), and the extent to which it is explained by technology through changes in the relative demand of college and non-college workers (Goldin and Katz (2008), Katz and Murphy (1992), Boudarbat, Riddell, and Lemieux (2010)), or by the intensity of capital use through capital-skill complementarities (Krusell, Ohanian, Ríos-Rull, and Violante, 2000).

The role of occupations in these types of studies was limited, as there was generally no distinction made between skills and tasks. At most, two broad occupational categories (production and non-production) were used as a proxy for skill groups (Berman, Bound, and Machin (1998), Berman, Bound, and Griliches (1994)). Recent theories of ‘routinization’ or routine-biased technical change (RBTC) have brought occupations and their task content to the forefront. Empirical studies of the effects of RBTC for the United States have relied on repeated cross-sectional data, such as the Census or the Current Population Survey (CPS) (e.g. Autor, Katz, and Kearney (2008)), and have studied the effects of technological change on the wage structure of the economy, through changes in the occupational composition of employment. These studies have so far not analyzed the impacts of RBTC on individual workers, which is the focus of this paper.

In contrast to the focus in the skill-biased technical change literature on the changes over time in the skill wage premium, changes in occupational wage premia (implied by models of RBTC such as the one used in this paper) have not received much attention in the literature. Gibbons, Katz, Lemieux, and Parent (2005) estimate the levels of occupational wage premia, but not their changes over time. Many empirical studies include occupation dummies when

8See Lemieux (2008) for a survey on the evolving nature of wage inequality and the different theories that have been suggested since the 1990s.

9In addition to the routine content of occupations, their offshorability has also been argued to play an important role in the polarization of the labor market, as many middle-wage occupations also display task characteristics which make them more easily offshorable (Grossman and Rossi-Hansberg (2008), Firpo, Fortin, and Lemieux (2011)). Changes in the industrial composition, on the other hand, do not explain the changes in the employment structure: Acemoglu and Autor (2011) find that the shift against middle-skilled and favoring high- and low-skilled occupational categories occurs mainly within industries.

10Some attention has also been paid to changes in mean wages across occupations. For example, Krueger (1993) finds that occupations that have a larger increase in the share of workers using computers between 1984 and 1989 had a higher increase in mean log hourly earnings.

11Autor and Dorn (2009) study changes in employment shares across occupations for particular demographic groups, exploiting heterogeneity across metropolitan areas in the U.S. Their analysis uses city-level rather than individual-level data.
estimating wage regressions, but few include occupation-year dummies within a framework that allows for consistently estimated coefficients. For example, Cragg and Epelbaum (1996) estimate changes over time in the occupational premia in Mexico, but their estimation strategy does not take into account that selection into occupations may be correlated with workers’ unobservable characteristics.\(^\text{12}\) The empirical strategy followed in this paper, which does control for selection into occupations, generates unbiased and consistent estimates, and thus provides information on how occupational wage premia have changed in the U.S. since the mid-1970s.

The paper also contributes to the literature on occupational mobility and its associated wage changes. Kambourov and Manovskii (2009) argue that an important component of human capital is occupation-specific, and is lost when a worker switches occupations.\(^\text{13}\) Meanwhile Gathmann and Schonberg (2010) and Poletaev and Robinson (2008) provide evidence that human capital has an important task-specific component. Kambourov and Manovskii (2008) document an increase in occupational mobility in the United States between 1968 and 1997.\(^\text{14}\) Groes, Kircher, and Manovskii (2009), using Danish administrative data, find a U-shaped pattern for occupational mobility, consistent with what I find in this paper. The findings in this paper bridge the gap between this literature on individual-level patterns and the aggregate-level polarization literature on the effects of technological change. The results presented in this paper help interpret many of the findings from the occupational mobility literature within the broader context of technical change and labor market polarization.

The rest of the paper is organized as follows. Section 2 describes the theoretical framework. Section 3 derives the model’s predictions for the effects of routine-biased technical change. Section 4 describes the data and the occupational categories. Section 5 describes the empirical strategy. Section 6 presents the empirical results testing the predicted effects of RBTC using PSID data. Section 7 presents some concluding remarks.

2 Model

The model features an economy with a continuum of workers who differ in terms of their skill level, and three occupations. There is sorting into occupations based on comparative advantage as in Gibbons, Katz, Lemieux, and Parent (2005),\(^\text{15}\) and perfect information. The

\(^{12}\) They find that high paying occupations experienced high growth in their wage premia over the period 1987-1993, explaining close to half of the growing wage dispersion in Mexico, while low-skill occupations experienced rapid employment growth but sluggish wage growth. They link their findings to the elasticity of labor supply for workers of different skill levels.

\(^{13}\) See also Sullivan (2010) for evidence on the varying degrees of importance of occupation- and industry-specific human capital across different 1-digit occupations. His analysis uses data from the 1979 Cohort of the National Longitudinal Survey of Youth (NLSY).

\(^{14}\) See also Moscarini and Thomsson (2007).

\(^{15}\) Acemoglu and Autor (2011) call this type of model a Ricardian model of the labor market.
role of capital in the model is as envisioned in Autor, Levy, and Murnane (2003): Capital enters the production function as a substitute for routine tasks and a complement for non-routine cognitive tasks. Technical change is driven by increases in capital utilization (due, for example, to a fall in the cost of computing power), and is therefore routine-biased.

The model follows Jung and Mercenier (2010) in featuring a continuum of skills and three occupations. This contrasts with Acemoglu and Autor (2011), who consider a continuum of tasks and three skill groups. One advantage of the Jung and Mercenier (2010) setup is that it does not require the definition of arbitrary distinctions between low-, middle- and high-skill workers. Boundaries only need to be defined between occupations (non-routine manual, routine, and non-routine cognitive). These distinctions can be made by relying on broad occupation codes, which differ sharply in terms of their task content. Another advantage of the setup used here is that it allows each individual worker’s wage to depend both on their skill level and the task they perform. In Acemoglu and Autor (2011), all workers of a given skill receive the same wage, regardless of the task they are employed in.

This section describes the model. The exposition follows Jung and Mercenier (2010). Appendix B extends the model to allow for two-dimensional skill endowments (cognitive and manual) and describes the conditions under which the predictions of the basic model are still valid in expectations in that richer model.

2.1 Household preferences

There is a single representative household composed of a continuum of workers. The household has Cobb-Douglas preferences combining two consumption goods, Y_1 and Y_2. The household’s utility function is given by:

$$U(Y_1,Y_2) = (1-\beta) \ln Y_1 + \beta \ln Y_2$$

where $0 < \beta < 1$. Maximizing utility subject to the budget constraint $I = p_1 Y_1 + p_2 Y_2$ (where Inc stands for total income) yields the following demand system:

$$p_1 Y_1 = (1-\beta)I$$
$$p_2 Y_2 = \beta I$$

2.2 Firms

Both industries Y_1 and Y_2 are perfectly competitive.

16 The classification may still be subject to criticism, as some particular occupations may be hard to classify in an obvious manner. Details on the way in which occupations are classified in this paper are presented in the Data Section.
The production of the Y_1 good requires labor performing non-routine manual tasks. In practice, non-routine manual tasks are mostly service occupations, so Y_1 may be thought of as a service good.

Meanwhile, the Y_2 good requires the combination of two different tasks: routine and non-routine cognitive. The production technology is such that these tasks are perfect complements. That is, production requires inputs of routine and non-routine cognitive task services in equal proportions.

While non-routine tasks (both manual and cognitive) may be performed only by workers, routine tasks may be performed either by workers or by physical capital (computers). In other words, labor and capital are substitutes in the provision of routine tasks, while labor and capital are complements in the provision of non-routine cognitive tasks.\(^{17}\)

Specifically, let the production function for the Y_2-good be:

$$Y_2 = \min\{\kappa_{rt}, rt, cog\}$$

where κ_{rt} are exogenously determined routine task services provided by machines (capital), rt are total routine task services provided by workers, and cog are total non-routine cognitive task services provided by workers. rt and cog are endogenous and their determination will be described in detail below.

The assumptions of perfect substitutability between capital and routine workers, and perfect complementarity between capital and non-routine cognitive workers, although admittedly extreme, capture the role of capital in a simple and tractable way, and allow the derivation of strong and clear predictions from the model on the effects of routine-biased technical change (as will be discussed in Section 3).\(^{18}\)

The marginal cost of labor (the wage per efficiency unit) for each task will be determined in equilibrium and is denoted C_{man}, C_{rt} and C_{cog}, for non-routine manual, routine, and non-routine cognitive tasks, respectively.

2.3 Labor productivity

Workers supply labor, and are differentiated by their skill level z, which has an exogenous cumulative distribution $G(z)$ with support $[z_{min}, z_{max}]$.

Each worker may perform one of three distinct tasks: non-routine manual (man), routine (rt), or non-routine cognitive (cog).

Let $\varphi_j(z)$ denote the productivity (in terms of supplied efficiency units) of a worker of skill z performing task $j \in \{man, rt, cog\}$. $\varphi_j(z)$ is continuous and increasing in z so that a

\(^{17}\)See Autor et al. (2003) and Acemoglu and Autor (2011) for a discussion of why computers may be thought of as substitutes for routine workers and complements for non-routine workers.

\(^{18}\)Autor et al. (2003) use a Cobb-Douglas specification to capture the complementarity between routine and non-routine tasks, with computers being perfect substitutes for workers in providing routine tasks.
higher skilled worker is more productive than a less skilled one when performing the same
task (absolute advantage). It is also assumed that more skilled workers have a comparative
advantage in performing more complex tasks (where non-routine cognitive tasks are assumed
to be more complex than routine tasks, and these in turn are assumed to be more complex
than non-routine manual tasks). The productivity differences are assumed to hold not only
in levels but also in logs. This means that:

\[0 < \frac{d \ln \varphi_{\text{man}}(z)}{dz} < \frac{d \ln \varphi_{\text{rt}}(z)}{dz} < \frac{d \ln \varphi_{\text{cog}}(z)}{dz} \]

(5)

Assume \(\varphi_j(z_{\text{min}}) = 1 \) for \(j \in \text{man, rt, cog} \).

2.4 Worker sorting and wages

Workers will choose which task to perform based on competitively determined wages, which
they take as given. An individual worker's wage will reflect both his own skills, and the type
of task he is hired to perform.

With competitive labor markets, workers will sort in equilibrium between the three types
of jobs according to their respective comparative advantage. From Equation (5), more skilled
workers have a comparative advantage at more complex tasks. Therefore, in equilibrium there
will be skill thresholds \(z_0 \) and \(z_1 \), where \(z_{\text{min}} < z_0 < z_1 < z_{\text{max}} \), such that the sorting pattern
is as follows: The least skilled workers, that is, those with \(z \in [z_{\text{min}}, z_0) \) will be employed in
non-routine manual occupations producing good \(Y_1 \). The medium-skill workers, those with \(z \in [z_0, z_1) \), will perform routine tasks within the \(Y_2 \)-sector. Meanwhile, the most skilled
workers, \(z \in [z_1, z_{\text{max}}] \), will work in non-routine cognitive jobs also within the \(Y_2 \)-sector.

Workers are paid at their marginal productivity, so the wages will satisfy:

\[
 w(z) = \begin{cases}
 C_{\text{man}} \varphi_{\text{man}}(z) & \text{for } z_{\text{min}} \leq z < z_0 \\
 C_{\text{rt}} \varphi_{\text{rt}}(z) & \text{for } z_0 \leq z < z_1 \\
 C_{\text{cog}} \varphi_{\text{cog}}(z) & \text{for } z_1 \leq z \leq z_{\text{max}}
\end{cases}
\]

In equilibrium, the cutoffs \(z_0 \) and \(z_1 \) are determined so that the marginal workers have
no incentives to relocate between tasks. That is, the marginal worker would receive the same
wage performing either task. Formally, this means:

\[
 C_{\text{man}} \varphi_{\text{man}}(z_0) = C_{\text{rt}} \varphi_{\text{rt}}(z_0) \quad (6) \\
 C_{\text{rt}} \varphi_{\text{rt}}(z_1) = C_{\text{cog}} \varphi_{\text{cog}}(z_1) \quad (7)
\]

According to the way in which the tasks have been labeled, this equilibrium distribution
implies that mean real wages will be lowest for non-routine manual workers, and highest for
non-routine cognitive workers, which is consistent with the data (as will be shown in the
empirical section).

2.5 Equilibrium

The equilibrium skill thresholds \(z_0 \) and \(z_1 \) determine the employment in each of the occupation types, and the output of each of the goods \(Y_1 \) and \(Y_2 \). For the \(Y_1 \)-good, the market-clearing condition is:

\[
\int_{z_{\text{min}}}^{z_0} \varphi_{\text{man}}(z) dG(z) = Y_1
\]

(8)

For the \(Y_2 \)-sector, from equation (4), total input of routine and non-routine cognitive task services must be equal in equilibrium. That is:

\[
\kappa_{rt} \int_{z_0}^{z_1} \varphi_{rt}(z) dG(z) = \int_{z_1}^{z_{\text{max}}} \varphi_{\text{cog}}(z) dG(z)
\]

(9)

Recall that \(\kappa_{rt} \) accounts for the (exogenous) contribution of capital to the provision of routine tasks.

The market-clearing condition for the \(Y_2 \)-good can be written either in terms of the total input of routine task services, or the total input of non-routine cognitive task services. In terms of the latter, it is as follows:

\[
\int_{z_1}^{z_{\text{max}}} \varphi_{\text{cog}}(z) dG(z) = Y_2
\]

(10)

Marginal cost pricing holds in the \(Y_1 \)-sector, so that:

\[
p_1 = C_{\text{man}}
\]

(11)

Finally, the household’s income is given by:

\[
Inc = C_{\text{man}} \int_{z_{\text{min}}}^{z_0} \varphi_{\text{man}}(z) dG(z) + C_{rt} \kappa_{rt} \int_{z_0}^{z_1} \varphi_{rt}(z) dG(z) + C_{\text{cog}} \int_{z_1}^{z_{\text{max}}} \varphi_{\text{cog}}(z) dG(z)
\]

(12)

Let the \(Y_1 \) good be the numeraire, so \(p_1 = 1 \).

Equations (2), (3), (6), (7), (8), (9), (10), (11), and (12) along with the choice of numeraire determine the equilibrium levels of the endogenous variables \(C_{\text{man}}, C_{rt}, C_{\text{cog}}, z_0, z_1, Y_1, Y_2, p_1, p_2, \text{Inc} \).
3 Effects of routinization-biased technical change

In this section, I analyze the effects of routinization-biased technical change (RBTC) on the endogenous variables of the model. The analysis extends Jung and Mercenier (2010) by presenting a formal derivation of the general equilibrium effects of RBTC, and by focusing on the implied effects for individual workers in terms of occupational switching patterns and wage changes. Unlike Jung and Mercenier (2010), who define RBTC as an increase in \(\kappa_{rt} \) as well as a simultaneous increase in the slope of \(\varphi_{rt}(z) \), I define RBTC as an increase in \(\kappa_{rt} \) only.

I do this for two reasons. First, routinization theories have thought of capital as changing marginal productivities of workers performing different tasks due to the substitutabilities and complementarities embedded in the production function (Autor et al., 2003), rather than through changes in the supply of efficiency units of particular worker types. Although this extra channel might be worth exploring in future work, by changing only \(\kappa_{rt} \) I can study the implications of standard routinization theories within the context of the model considered in this paper. This ensures comparability with the predictions derived from other models in the literature, in particular, Acemoglu and Autor (2011).\(^{19}\) Second, by changing only one parameter, the general equilibrium effects of that specific change may be isolated and formalized. This also eases the interpretation of the results, as all of the implied effects may be attributed to the change in one particular parameter.

3.1 Switching patterns induced by RBTC

First, consider a comparative statics analysis of the effects of a change in \(\kappa_{rt} \) on the ability cutoffs \(z_0 \) and \(z_1 \). This will tell us what kind of occupational switching is induced by RBTC, and which workers switch to which occupations.

Define:

\[
\text{man}(z_0) \equiv \int_{z_{\text{min}}}^{z_0} \varphi_{\text{man}}(z) dG(z) \quad (13)
\]

\[
\text{rt}(z_0, z_1) \equiv \int_{z_0}^{z_1} \varphi_{\text{rt}}(z) dG(z) \quad (14)
\]

\[
\text{cog}(z_1) \equiv \int_{z_1}^{z_{\text{max}}} \varphi_{\text{cog}}(z) dG(z) \quad (15)
\]

These are the equilibrium total labor services in non-routine manual, routine, and non-routine cognitive tasks, respectively.

Using the normalization \(p_1 = 1 \), and combining equations (2), (8)-(11), and (12) we can

\(^{19}\)Jung and Mercenier (2010) are interested in distinguishing between the effects of RBTC and the effects of globalization, and for that purpose, changing the slope of \(\varphi_{rt}(z) \) as a consequence of RBTC is important.
get to the following two-equation system, with two unknowns \(z_0 \) and \(z_1 \):

\[
\begin{align*}
man(z_0) &= \frac{1 - \beta}{\beta} \left[\varphi_{\text{man}}(z_0) \left(1 + \frac{\varphi_{\text{rt}}(z_1)}{\varphi_{\text{cog}}(z_1)} \right) \right] \text{cog}(z_1) \quad (16) \\
\kappa_{\text{rt}} z_0, z_1 &= \text{cog}(z_1) \quad (17)
\end{align*}
\]

Take logs of these equations to get:

\[
\begin{align*}
\ln man(z_0) &= \ln \left(\frac{1 - \beta}{\beta} \right) + \alpha_0(z_0) + \tilde{\alpha}_1(z_1) + \ln \text{cog}(z_1) \quad (18) \\
\ln \kappa_{\text{rt}} + \ln rt(z_0, z_1) &= \ln \text{cog}(z_1) \quad (19)
\end{align*}
\]

where the following definitions have been used: \(\alpha_0(z_0) \equiv \ln \left[\frac{\varphi_{\text{man}}(z_0)}{\varphi_{\text{rt}}(z_0)} \right] \), and \(\tilde{\alpha}_1(z_1) \equiv \ln \left[1 + \frac{\varphi_{\text{rt}}(z_1)}{\varphi_{\text{cog}}(z_1)} \right] \).

Take total derivatives of equations (18) and (19) to get:

\[
\begin{pmatrix}
\alpha'_0(z_0) - \frac{\text{man}'(z_0)}{\text{man}(z_0)} r_{\text{rt}}(z_0, z_1) \\
\tilde{\alpha}'_1(z_1) + \frac{\text{cog}'(z_1)}{\text{cog}(z_1)} r_{\text{rt}}(z_0, z_1) - \frac{\text{cog}(z_1)}{\text{cog}(z_1)} r_{\text{rt}}(z_0, z_1)
\end{pmatrix}
\begin{pmatrix}
dz_0 \\
dz_1
\end{pmatrix}
= \begin{pmatrix}
0 \\
1
\end{pmatrix} d \ln \kappa_{\text{rt}} \quad (20)
\]

Proposition 1 (Effect of RBTC on ability cutoffs): The general equilibrium effects of \(d \ln \kappa_{\text{rt}} \) on the cutoffs \(z_0 \) and \(z_1 \) are given by:

\[
\begin{align*}
\frac{dz_0}{d \ln \kappa_{\text{rt}}} &= -\tilde{\alpha}'_1(z_1) - \frac{\text{cog}'(z_1)}{\text{cog}(z_1)} \frac{1}{\Delta} > 0 \quad (21) \\
\frac{dz_1}{d \ln \kappa_{\text{rt}}} &= \alpha'_0(z_0) - \frac{\text{man}'(z_0)}{\text{man}(z_0)} \frac{1}{\Delta} < 0 \quad (22)
\end{align*}
\]

where \(\Delta \) is the determinant of the matrix on the left-hand-side of the system of Equation (20).

Proof: See Appendix A.1.

This proposition says that an increase in \(\kappa_{\text{rt}} \) (RBTC) will lead to an increase in \(z_0 \) and a decrease in \(z_1 \). This implies employment polarization: the share of routine jobs in total employment will decrease, while the share of non-routine manual and the share of non-routine cognitive jobs will increase. It also implies the following in terms of switching patterns:

Corollary 1 (Switching Patterns induced by RBTC): Let the new ability cutoffs after the change in \(\kappa_{\text{rt}} \) be \(z'_0 \) and \(z'_1 \). An increase in \(\kappa_{\text{rt}} \) will lead to the following switching pattern: Workers at the bottom of the ability distribution within routine jobs, that is, those
with \(z \in [z_0, z_0') \), will switch to non-routine manual jobs, while workers at the top of the ability distribution within routine jobs, that is, those with \(z \in (z_1', z_1) \), will switch to non-routine cognitive jobs.

Intuitively, an increase in \(\kappa_{rt} \) means that physical capital produces a larger amount of routine task services. Because of the technology in the \(Y_2 \)-sector, physical capital and labor performing routine tasks are substitutes, while physical capital and labor performing non-routine cognitive tasks are complements. The increase in the provision of routine task services by computers induces the \(Y_2 \)-sector firms to transfer workers from routine to non-routine cognitive tasks. The workers with the highest ability among the routine workers are the best suited for this switch.

With the increased household income, demand for the \(Y_1 \) good will increase as well, so the \(Y_1 \) firms will want to hire more workers to perform non-routine manual tasks. The workers with the lowest ability among the routine workers are the best suited for this switch.

The predicted wage changes for workers of different ability levels will be analyzed in the following subsection.

3.2 Wage changes induced by RBTC

The model has predictions for wage changes, both for workers who switch occupations and for workers who stay in the same occupation.

First, consider the changes induced by RBTC on the wage per efficiency unit \(C_j \) in each occupation. Because of marginal cost pricing \(C_{\text{man}} = p_1 \), and \(p_1 \) is normalized to 1 in any equilibrium, so \(C_{\text{man}} \) does not change. All of the wage changes should be interpreted as being relative to this normalization.

Using the comparative statics results on the effects of \(\kappa_{rt} \) on \(z_0 \) and \(z_1 \), along with equations (6) and (7), we have the following result:

Proposition 2 (Changes in wage per efficiency unit induced by RBTC):

\[
\frac{d \ln C_{\text{man}}}{d \ln \kappa_{rt}} = 0 \quad \frac{d \ln C_{rt}}{d \ln \kappa_{rt}} < 0 \quad \frac{d \ln (C_{\text{cog}}/C_{rt})}{d \ln \kappa_{rt}} > 0
\]

\[
\frac{d \ln C_{\text{cog}}}{d \ln \kappa_{rt}} \geq 0 \quad \text{if and only if} \quad \alpha'_1(z_1) \left[\alpha'_0(z_0) - \frac{\text{man}'(z_0)}{\text{man}(z_0)} \right] \geq \alpha'_0(z_0) \left[\tilde{\alpha}'_1(z_1) - \frac{\text{cog}'(z_1)}{\text{cog}(z_1)} \right]
\]

Proof: See Appendix A.2.

Intuitively, from Equation (6), the wage per efficiency unit of routine relative to non-routine manual workers depends on their relative productivity at the ability cutoff \(z_0 \). Routine-
biased technical change induces an increase in z_0. At a higher z, the productivity gap between routine and non-routine manual workers is greater, so the relative wage per efficiency unit of routine workers is lower.

Conversely, from Equation (7) the wage per efficiency unit of routine relative to non-routine cognitive workers depends on their relative productivity at the ability cutoff z_1. Routine-biased technical change induces a fall in z_1, reducing the productivity gap between routine and non-routine cognitive workers, and reducing the relative wage per efficiency unit of routine workers.

The change in the wage per efficiency unit of non-routine cognitive relative to non-routine manual workers, however, is ambiguous. The fall in z_1 tends to increase relative wages in non-routine cognitive, but the increase in z_0 works in the opposite direction. The net effect will depend on how responsive the productivity ratios are to z at the cutoff levels (given by $\alpha_0'(z_0)$ and $\alpha_1'(z_1)$) and on how much the supply of tasks change with a marginal change in the cutoffs (which in turn depends on the productivity functions and the probability density of skills at the cutoffs).\footnote{This is analogous to the ambiguity in Acemoglu and Autor (2011) regarding the effect of RBTC on the wage of high skill workers relative to low skill workers.}

Now, recall that log wages are given by:

$$\ln w(z) = \ln C_j + \ln \varphi_j(z)$$ \hspace{1cm} (23)

The wage change induced by the shock to κ_{rt} will depend on the changes in C_j and on whether the individual switched occupations or not. That is:

$$\frac{d\ln w(z)}{d\ln \kappa_{rt}} = \frac{d\ln C_j'}{d\ln \kappa_{rt}} + \mathbb{I}(j \neq j'|z) \left[\ln C_j' - \ln C_j + \ln \varphi_j'(z) - \ln \varphi_j(z) \right]$$ \hspace{1cm} (24)

where j denotes the occupation that a worker of skill level z optimally chooses before the change in κ_{rt}, and j' indicates his optimal choice after the shock. $\mathbb{I}(j \neq j'|z)$ is an indicator function equal to 1 if $j \neq j'$ for a worker of skill level z.

For workers who do not switch occupations, $j = j'$, and the wage change induced by the change in κ_{rt} is equal to the change in the wage per efficiency unit C_j in their occupation.

For workers who do switch occupations, the wage change is equal to the change in C_j' (change in wage per efficiency unit in their new occupation) plus the difference between the wage they would have received before the shock in occupation j' and the wage they were receiving in occupation j.

Based on the results from Proposition 1, and defining the new cutoff skill levels (after the shock to κ_{rt}) as z_0' and z_1', we have that:
\[I(j \neq j'|z) = \begin{cases}
0 & \text{if } z_{\min} \leq z < z_0 \text{ or } z'_0 \leq z < z'_1 \text{ or } z_1 \leq z \leq z_{\max} \\
1 & \text{if } z_0 \leq z < z'_0 \text{ or } z'_1 \leq z < z_1
\end{cases} \]

We can now analyze the wage changes for workers of different skill levels.

Proposition 3 (Wage changes induced by RBTC for workers of different ability levels): The wage changes induced by a positive shock to \(\ln \kappa_{rt}\) are as given in the following equation, where the final column indicates each worker’s occupation before and after the shock.

\[
\frac{d\ln w(z)}{d\ln \kappa_{rt}} = \begin{cases}
\frac{d\ln C_{\text{man}}}{d\ln \kappa_{rt}} & = 0 \quad \text{if } z_{\min} \leq z < z_0 \quad \text{man} \rightarrow \text{man} \\
\frac{d\ln C_{\text{man}}}{d\ln \kappa_{rt}} + \ln C_{\text{man}} + \ln \varphi_{\text{man}}(z) - (\ln C_{rt} + \ln \varphi_{rt}(z)) & < 0 \quad \text{if } z_0 \leq z < z'_0 \quad \text{rt} \rightarrow \text{man} \\
\frac{d\ln C_{\text{rt}}}{d\ln \kappa_{rt}} & < 0 \quad \text{if } z'_0 \leq z < z'_1 \quad \text{rt} \rightarrow \text{rt} \\
\frac{d\ln C_{\text{cog}}}{d\ln \kappa_{rt}} + \ln C_{\text{cog}} + \ln \varphi_{\text{cog}}(z) - (\ln C_{rt} + \ln \varphi_{rt}(z)) & \geq \frac{d\ln C_{\text{rt}}}{d\ln \kappa_{rt}} \quad \text{if } z'_1 \leq z < z_1 \quad \text{rt} \rightarrow \text{cog} \\
\frac{d\ln C_{\text{cog}}}{d\ln \kappa_{rt}} & > \frac{d\ln C_{\text{rt}}}{d\ln \kappa_{rt}} \quad \text{if } z_1 \leq z \leq z_{\max} \quad \text{cog} \rightarrow \text{cog}
\end{cases}
\]

Proof: See Appendix A.3.

For stayers, wage changes are given by the change in wages per efficiency unit in their particular occupation. This implies a fall in wages of stayers in routine occupations, relative to stayers in either of the non-routine occupations. Meanwhile, workers switching out of routine must do at least as well as stayers (as they always could have chosen to stay in the routine occupation).

Figure 1 graphically summarizes all the results on the effects of RBTC on the equilibrium skill cutoffs and wages for workers of different ability levels. The black lines in the Figure represent the original equilibrium, before the RBTC shock. The cutoff skill levels are given by \(z_0\) and \(z_1\). Workers with ability below \(z_0\) optimally select into the non-routine manual occupation, those with ability above \(z_1\) select into the non-routine cognitive occupation, and those with ability between \(z_0\) and \(z_1\) select into the routine occupation. Mean wages are highest in the non-routine cognitive occupation and lowest in the non-routine manual one.

The effects of RBTC are depicted with the blue lines. From Proposition 2, the sign of
the change in C_{cog} is ambiguous (although its change, if any, is greater than the change in C_{rt}). The graph is for the case where C_{cog} does not change. From Propositions 1 and 2 C_{rt} unambiguously falls, and workers with ability between z_0 and z_0' find it optimal to switch to non-routine manual jobs, while workers with ability between z_1' and z_1 find it optimal to switch to non-routine cognitive jobs. Stayers in routine jobs experience a wage fall given by the fall in C_{rt}. Switchers experience smaller wage losses than stayers in routine jobs. Among those who stay in non-routine cognitive jobs, the wage change will depend on the change in C_{cog}. In the particular case depicted in the figure, they experience no wage change. In general, C_{cog} may increase or fall, but even if it falls, it can only do so by less than the fall in C_{rt}. Therefore, the relative wage of stayers in non-routine cognitive relative to stayers in routine jobs unambiguously goes up.

3.3 Summary of the predictions of the model

The general equilibrium effects of a positive shock to $\ln \kappa_{rt}$ are as follows:

1. **Switching patterns:**

 (a) The workers at the bottom of the ability distribution within routine occupations switch to non-routine manual jobs.

 (b) The workers at the top of the ability distribution within routine occupations switch to non-routine cognitive jobs.

 (c) No switching is induced for non-routine workers (either manual or cognitive).

2. **Wage changes:**

 (a) Workers staying in routine jobs experience a fall in real wages, relative to those staying in non-routine manual jobs (because C_{rt} falls).

 (b) Workers staying in non-routine cognitive jobs experience an increase in real wages, relative to those staying in routine jobs (because C_{cog}/C_{rt} increases).

 (c) Workers who switch from routine to non-routine manual jobs experience a fall in real wages.

 (d) Workers who switch from routine to non-routine cognitive jobs experience higher wage growth than workers staying in routine occupations.

4 Data

In order to test the individual-level predictions of the model, it is optimal to have a panel dataset that covers an extended period of time and includes many cohorts. The Panel Study of Income Dynamics (PSID) provides the best data for this purpose for the United States.
The PSID is a longitudinal study of nearly 9,000 U.S. families. Following the same families since 1968, the PSID collects data on economic, health, and social behavior, including the occupational affiliation of the household head and wife, their wage on their main job at the time of the interview, and their total labor earnings in the previous calendar year.21 The main advantage of the PSID is its wide longitudinal dimension, tracking the same set of individuals every year between 1968 and 1997, and every two years from then onwards.

The paper uses wages reported for the current job, as they can be directly linked to the occupation that the respondent is working in at the time of the interview. Data on wages for salaried workers is only available starting in 1976, so the analysis only uses data from that year onwards.22 The most recent data used in the paper are for 2007.

For this paper, the sample is limited to male household heads, aged 16 to 64, employed in non-agricultural, non-military jobs, and who are part of the “Survey Research Center” (SRC) sample. This is the main original sample from the PSID. The over-sample of low-income households (SEO sample) and the Immigrant samples added in the 1990s are excluded from the analysis.23

Throughout the paper occupations are classified into three broad groups, based on the categories used by Acemoglu and Autor (2011). The groups are as follows:

- **Non-routine cognitive:** Professional, technical, management, business and financial occupations.

- **Routine:**24 Clerical, administrative support, sales workers, craftsmen, foremen, operatives, installation, maintenance and repair occupations, production and transportation occupations, laborers.

- **Non-routine manual:** Service workers.

The categorization is based on the aggregation of 3-digit occupational codes that map into these broader categories. Each group is labeled with the name of the main task performed by workers in that occupation, as explained in Acemoglu and Autor (2011) and supported by

21The Panel Study of Income Dynamics is primarily sponsored by the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development and is conducted by the University of Michigan. PSID data is publicly available at \url{http://psidonline.isr.umich.edu/}.

22Throughout the paper, nominal values are converted to 1979 dollars using the Consumer Price Index for All Urban Consumers from the Bureau of Labor Statistics.

23Women are excluded as there are many confounding factors in the changes in the occupational composition of employed women over the past three decades. The low-income over-samples is excluded in order to keep a sample that is representative of the entire population (at least in the early years). The immigrant sample is excluded as it is only available for some years and significantly changes the occupational composition of employment in the sample.

24I do not distinguish between routine cognitive and routine manual workers in order to ensure consistency with the occupational groupings used in the model. Note that because the sample used in this paper includes only men, the vast majority of routine workers are in routine manual occupations.
data from the Dictionary of Occupational Titles. More details on the specific occupations and occupation codes included in each category are presented in Appendix D.

Table 1 presents descriptive statistics for each of the broad occupation groups. Non-routine cognitive and routine occupations account for the majority (93%) of total employment. Mean wages are highest in non-routine cognitive occupations and lowest in non-routine manual jobs. Non-routine cognitive jobs have a much higher share of college educated workers, and a much lower rate of unionization than the other occupations.

Figure 2 plots the share of employment in each of the broad occupation groups over time. The aggregate patterns shown in the Figure are broadly consistent with evidence based on Census data (Acemoglu and Autor, 2011): there is a sharp decline in the share of employment in routine occupations throughout the sample period (1968-2007), particularly up to 1990. The compensating share increase occurred primarily in non-routine cognitive jobs. Non-routine manual jobs show an increasing share towards the end of the sample period.

Figure 3 plots mean real wages for each of the occupation groups over time. The figure confirms that routine jobs tend to be in the middle of the wage distribution, at least in the early periods. Mean real wages have experienced large increases in non-routine cognitive occupations since the early 1990s, but were flat or decreasing during the 1980s and early 1990s in the other occupations.

5 Empirical Implementation

In order to test the predictions summarized in subsection 3.3, I estimate a wage equation and rank individuals according to their estimated ability. This section describes the empirical methodology and discusses identification issues.

From the model (Equation (23)), the potential wage for individual i in occupation j consists of an occupation wage premium (C_j), and a component that depends on the individual’s skill and the occupation-specific returns to skill ($\varphi_j(z)$). Allowing for variation over time in the wage premium (e.g. because of RBTC) and in individuals’ ability leads to the following equation for the potential wage of individual i in occupation j:

$$\ln w_{ijt} = \theta_{jt} + \ln \varphi_j(z_{it})$$ (25)

In a recent working paper, Lefter and Sand (2011) suggest that the occupational coding scheme plays an important role in the extent and timing of polarization. They find that using alternative coding methods affects the extent of wage growth in low-skill occupations, and weakens the contrast between the 1980s and the 1990s in employment growth patterns, relative to what is suggested by Autor et al. (2006).

For corresponding figures with Census data, using four broad occupational categories, see Acemoglu and Autor (2011), Figures 13a and 13b.

The ranking of wages and the patterns over time are not driven by changes in the composition of workers across occupations along observable characteristics, as the same patterns are observed for the residuals from a flexible wage regression using a large number of observable individual characteristics.
where i denotes the individual, t denotes the time period, j denotes the occupation, and
$\theta_{jt} \equiv \ln C_{jt}$ is the occupation wage premium in occupation j at time t.

Assume that an individual’s ability z_{it} is a vector composed of two types of variables: a
set of human capital and demographic characteristics observed by the econometrician X_{it},
and a set of time-invariant characteristics η_i that are not measured by the econometrician.

I make the following functional form assumption for $\varphi_j(z_{it})$:

$$\ln \varphi_j(z_{it}) = X_{it} \beta_j + \eta_i b_j$$

(26)

where β_j and b_j are vectors of occupation-specific returns to X_{it} and η_i, respectively.
Following Equation (5), assume that $\ln \varphi_j(z_{it})$ is increasing in both of its arguments. That is:

$$\beta_{\text{man}} < \beta_{\text{rt}} < \beta_{\text{cog}}$$
$$b_{\text{man}} < b_{\text{rt}} < b_{\text{cog}}$$

This assumption takes into account that skill premia (e.g. the college premium or the
premium for unobservable skills) vary across occupations (see Gibbons et al. (2005)), leading
to workers of different abilities self-selecting into different occupations, as described in the
model. Without any restrictions to mobility, a worker will select into the occupation where
he receives the highest wage. Given a fixed X_{it} and θ_{jt}, there will exist critical values of η_i
that determine the efficient assignment of workers to occupations. Because η_i and b_j are not
varying over time, occupational mobility will be driven by changes over time in X_{it} or θ_{jt}
exclusively. In practice occupational mobility is not frictionless. One can think of a worker’s
occupational choice as being driven by η_i, X_{it}, and θ_{jt}, as well as a noise component which is
uncorrelated to wages. This noise component may be interpreted as a search friction, which
does not affect a worker’s potential wage in the different occupations, but restricts the worker
from immediately selecting into his desired occupation each period.

Using the assumed functional form for $\ln \varphi_j(z_{it})$, and allowing for measurement error μ_{it}
in wages leads to the following wage equation for individual i at time t:

$$\ln w_{it} = \sum_j D_{ijt} \theta_{jt} + \sum_k D_{ikt} X_{it} \beta_j + \sum_j D_{ijt} \eta_i b_j + \tau_t + \mu_{it}$$

(27)

where D_{ijt} is an occupation selection indicator which equals one if person i selects into
occupation $j \in \{\text{man, rt, cog}\}$ at time t and equals zero otherwise, and I have also allowed
for aggregate time effects τ_t that affect wages for all workers in a given period, regardless of
their skill level or the occupation they work in. Crucially, measurement error μ_{it} is assumed
to be independent of sector affiliation and therefore orthogonal to D_{ijt}.

If Equation (27) were estimated by ordinary least squares (OLS), it would not be possible
to control for η_i (unobservable skills), and the estimation would be inconsistent, as the set of sector dummies D_{ijt} would be correlated with the error term. Including individual fixed effects would not solve the problem, as the return to the unobservable component of skills varies across occupations. This issue can be addressed by using fixed effects at the individual-occupation (i.e. occupation spell) level, as I will now describe.

Notice that for the purposes of this paper, I am not interested in identifying b_j. Therefore, I rewrite Equation (27) as:

$$
\ln w_{it} = \sum_j D_{ijt} \theta_{jt} + \sum_j D_{ijt} X_{it} \beta_j + \sum_j D_{ijt} \gamma_{ij} + \tau_t + \mu_{it}
$$

(28)

where $\gamma_{ij} \equiv \eta_i b_j$. The term γ_{ij} is composed of an individual’s time invariant skills and the occupation-specific returns to those skills. These components are orthogonal to measurement error μ_{it} and are time-invariant. One can think of γ_{ij} as an unobserved effect which varies for an individual across occupation spells, but stays constant whenever the individual stays in the same occupation. An estimation with fixed effects at the occupation spell level for each individual will control for this unobserved effect and will lead to consistent estimation of θ_{jt}, β_j and τ_t.\(^{28}\) The intuition behind this argument is that the fixed effects absorb all variation across occupation spells. They effectively demean wages within each occupation spell for each individual, eliminating the time invariant component within the spell, which is precisely the unobserved effect γ_{ij}. Recall that once η_i (through the fixed effect γ_{ij}), X_{it}, and θ_{jt} are controlled for, selection into occupations is random. Therefore, the remaining demeaned terms in the regression are orthogonal to the mean-zero error term and are consistently estimated.\(^{29}\)

The identifying assumption is that $E(\mu_{it}|X_i,D_{ij},\gamma_{ij},\tau_t) = 0$. Intuitively, as μ_{it} is measurement error which is independent of sector affiliation, it is orthogonal to the worker’s occupation selection in all periods (D_{ij}) and to the worker’s skills. Note that the specification is fully consistent with selection into occupations being correlated with the unobserved effect γ_{ij} (as is the case in this model).

Having consistent estimates of θ_{jt}, β_j and τ_t, an estimator $\hat{\gamma}_{ij}$ can be constructed. This will be an estimator of the return to time-invariant skills for individual i conditional on selecting into occupation j. Because γ_{ij} is monotonically increasing in skill within the occupation (the coefficients on each of the components of skill are common for all workers who selected into the occupation), the ranking of workers according to this measure corresponds to their ranking according to their underlying time-invariant ability. In order to test the model’s implications

\(^{28}\)Note that although η_i includes only unobserved individual skills, in practice, the occupation spell fixed effect will capture the wage effects of all time-invariant characteristics of the individual that impact wages within the occupation spell, both observable and unobservable, and regardless of whether their effect is through ability or through other factors such as discrimination.

\(^{29}\)See also Wooldridge (2002) on estimation of unbalanced panels with selection on time-invariant unobservables.
regarding switching patterns, I am only interested in a worker’s relative ability within an occupation in a given year, so having an estimator with which I can rank workers conditional on having selected into an occupation is sufficient for my purposes.30

I now turn to a discussion of the observable variables included in the fixed effects estimation of Equation (28). First consider the observable characteristics that affect ability, X_{it}. They may only include time-varying variables that reflect general and not occupation-specific ability.31 The specification discussed here assumes that X_{it} is fully transferable between occupations (although the return on its components varies across occupations), so it may include variables such as total work experience, but not occupational tenure. The current version of the paper does not include any variables in X_{it}.32

Next, consider the occupation wage premia θ_{jt}. In the empirical implementation, as in the model, the occupation-specific effect in the non-routine manual occupation is normalized so that $\theta_{man,t} = 0$ for all t, and all wages are relative to this normalization. To capture changes over time that affect all occupations (including non-routine manual), and to ensure that the normalization of $\theta_{man,t}$ to zero in all years is appropriate, the estimation includes a set of aggregate year effects that are common to all workers, regardless of their occupation or their skill level. This is the term τ_t, which is empirically captured through a full set of year fixed effects.

$\theta_{rt,t}$ and $\theta_{cog,t}$ can be estimated empirically as the coefficients on a set of interactions of year dummies with dummies for routine, and for non-routine cognitive occupations, respectively. The estimates of $\theta_{rt,t}$ and $\theta_{cog,t}$ will show how the occupational wage premia (C_{rt} and C_{cog} in the model) change over time, due to RBTC or other shocks, relative to the base occupation. Because of the inclusion of individual-occupation fixed effects, the occupation-time fixed effects are identified only from variation over time within occupation spells. Therefore, it is necessary to normalize $\theta_{rt,t}$ and $\theta_{cog,t}$ to zero for a base year.33 This identification argument implies that $\hat{\theta}_{rt,t}$ and $\hat{\theta}_{cog,t}$ should be interpreted as estimating a double difference: Rather than indentifying the level of the occupational wage premia, they identify their changes over time relative to the base year, and relative to the analogous change experienced by the base occupation (non-routine manual). As the purpose of this paper is to analyze changes over time in occupational wage premia, rather than their level, these are in fact the parameters of interest.34

30Note that the estimate mixes skills and returns to skills, but in terms of ranking this does not matter.

31Time-invariant characteristics may not be included as they will already be captured by the occupation spell fixed effect.

32Age cannot be included because the estimation already includes both individual fixed effects and time fixed effects, making it impossible to separately identify the effect of age. Education is not varying over time, so it will be captured in the occupation spell fixed effect.

33I do the normalization for the initial year, 1976.

34Gibbons et al. (2005) analyze differences in the levels of occupational wage premia and occupational returns to skills. They estimate a quasi-differenced version of Equation (27) using a non-linear instrumental variables technique.
When estimating Equation (28) in the data, I add an extra set of controls for marital status, unionization status, region, and SMSA. It is assumed that these variables are orthogonal to measurement error μ_{it}, and that their return is not occupation- or skill-specific. Their inclusion will therefore not affect the consistency of the estimated coefficients.\footnote{It is left as future work to relax this assumption in order to allow, for example, variation in the union premium across occupations.}

The empirical strategy may be extended to allow for changes over time in the return to observable characteristics that affect ability. In particular, there is evidence of changes over time in the college premium in the United States (see for example Goldin and Katz (2008) and Acemoglu and Autor (2011)). Appendix C describes this extension and discusses its implications for the empirical results.

6 Results: Effects of Routine-Biased Technical Change

In this section I test the predictions of the model using the PSID data. First, I present results on worker’s switching patterns according to their estimated ability. Then, I discuss results regarding the wage changes for workers with different occupational trajectories.

6.1 Switching patterns

I begin by testing the model’s implications regarding occupational switching patterns. The model predicts that RBTC induces workers at the bottom of the ability distribution within routine occupations to switch to non-routine manual jobs, and workers at the top of the distribution to switch to non-routine cognitive jobs.

As discussed above, I rank routine workers according to their position in the distribution of estimated log productivity in a given year (where estimated log productivity is equal to $\hat{\gamma}_{ij}$, the estimated individual-occupation fixed effect). Recall that γ_{ij} is monotonically increasing in underlying ability z. Therefore, I refer to the quintiles of estimated log productivity within an occupation-year as ability quintiles.

I analyze the exit rates among workers in different quintiles of the ability distribution. Figure 4 plots the probability of switching at each ability quintile for two different sub-samples: 1977-1989 and 1991-2005. The fraction of switchers is calculated over a two year period; that is, each bar in the graph indicates the fraction of workers from ability quintile q who switch out of routine occupations between period t and period $t + 2$. Only odd years are used to generate the graph. These restrictions are imposed in order to ensure comparability with the period from 1997 onwards, when the PSID became bi-annual. The fraction of switchers is calculated over the total number of workers from each quintile who have valid occupation reports in years t and $t + 2$.\footnote{It is left as future work to relax this assumption in order to allow, for example, variation in the union premium across occupations.}
The Figure shows that workers at the top of the ability distribution are more likely to switch out of routine jobs than workers of lower ability in both sub-periods. After 1991, the probability of switching increases for all ability quintiles, but particularly for the lower ability workers. This leads to a U-shaped pattern in the probability of switching after 1991, with workers at the top and the bottom of the ability distribution being more likely to switch than those in the middle.

Table 2 confirms that the differences across quintiles are statistically significant. The Table presents the results from a linear probability model, where the dependent variable is a dummy equal to 1 if the worker switches occupations. The regressors are a set of ability quintile dummies, with the omitted category being the middle quintile. Column (1) shows that before the 1990s, workers from the top ability quintile are 8.8% more likely to switch out of routine jobs than are workers in the middle of the ability distribution. From Column (2), after 1991, both workers at the bottom and the top of the distribution are significantly more likely to switch than those in the middle.

U-shapes in the patterns of occupational mobility have also been documented by Groes et al. (2009) using Danish administrative data. They explain these patterns within the context of a model of information frictions, where workers learn their ability level over time. This paper offers an alternative story that may complement theirs and explain part of their findings from the point of view of routine-biased technical change.

Next, I consider the direction of the switches occurring at each quintile of the ability distribution. The results are plotted in Figure 5. Switchers from all quintiles are more likely to go to non-routine cognitive jobs than to non-routine manual jobs. This would be expected even if the direction of switch were random, as the non-routine cognitive occupation is much larger in terms of employment than the non-routine manual one. However, there is a clear pattern of selection according to ability quintiles. Consistent with the prediction of the model, the probability of switching to non-routine manual jobs is decreasing in ability, while the probability of switching to non-routine cognitive jobs is increasing in ability.\footnote{The U-shape and the patterns in the direction of switching are also observed in the PSID data when using raw wages, or when using residuals from a flexible regression of wages on a large number of observable individual characteristics.}

After 1990, the probability of switching to both types of non-routine occupations increases, with the probability of switching to non-routine cognitive increasing more than the probability of switching to non-routine manual. This is documented in Table 3. The unconditional probability of switching to non-routine cognitive is 10.4% before 1991, and 13.4% afterwards, while the corresponding figures for non-routine manual are 1.9% and 3.0%.

Table 4 confirms the statistical significance of the differences across quintiles in the direction of switch patterns observed in Figure 5. Columns (1) and (2) are linear probability models for the probability of switching to non-routine cognitive, while Columns (3) and (4)\footnote{Note that Groes et al. (2009) also find a pattern of selection on ability in their Danish dataset.}
are analogous regressions for the probability of switching to non-routine manual. Workers in the highest ability quintile are the omitted category. Columns (1) and (2) shows negative and significant coefficients on the dummies for quintiles 1 through 4, meaning that workers from these ability quintiles are significantly less likely to go to non-routine cognitive occupations than those in the top quintile. Meanwhile, workers in the bottom quintile are significantly more likely to switch to non-routine manual occupations than those at the top, as evidence by the findings in Columns (3) and (4).

Taken together, these findings on switching patterns agree with the predictions of the model. There is selection on ability, with higher skilled routine workers being more likely to go to non-routine cognitive occupations, and lower skilled workers being more likely to go to non-routine manual occupations.

6.2 Wage changes

The next step is to explore the behavior of wages and wage changes. I begin with a simple motivating analysis to determine whether an individual’s occupation at time t has explanatory power over his subsequent wage growth.

Table 5 shows the results of a regression of individual wage growth between periods t and $t + j$ (where j ranges from 1 to 20 years) on dummies for the individual’s occupation at time t. All regressions include year dummies. In all cases, workers in non-routine manual occupations in year t are the omitted category.

The Table shows that individuals who start a given period in a routine job have significantly lower wage growth over subsequent years than workers in non-routine occupations. This is true over time horizons as long as 20 years. For example, a worker holding a routine job in a given year can expect his real wages to grow on average 6.2\% less over the subsequent four years than workers in other occupations, regardless of his future job transitions.

The result is that routine workers have much slower wage growth than workers in other occupations, regardless of whether they stay in routine occupations or switch to other jobs. The next sub-sections separately analyze the wage changes for stayers in routine jobs and for switchers, and take into account heterogeneities across individuals. This allows a comparison of the data with the predictions of the model.

6.2.1 Wage changes for occupation stayers

Consider first the wage changes for workers who do not switch occupations. Table 6 shows the results from running the same regressions as in Table 5, but now the sample includes only occupation stayers. In Column (1), stayers are defined as workers who are observed in the same broad occupation in years t and $t + 1$, while in the remaining columns they are defined as workers who are observed in the same broad occupation in years t and $t + 2$. The last
two columns split the sample into two different sub-periods, 1976-1989 and 1990-2005, and consider wage changes over two-year horizons within those sub-periods. In all cases, those workers who classified as stayers in non-routine manual jobs are the omitted category.

The Table shows that those who stay in routine jobs have significantly lower wage growth than stayers in any of the other occupational categories. For example, a worker staying in a routine job over the course of two years has a wage growth that is 1.8% lower than that of a worker remaining in a non-routine manual job over the same time period. Note that the rate of wage growth for routine workers is also in all cases significantly lower than that of non-routine cognitive workers.

From Proposition 3, the wage changes for stayers are given by the changes in C_j for their respective occupation. Empirically, from the estimation of Equation (28), the estimated $\hat{\theta}_{jt}$ (occupation-time fixed effects) will track changes in C_j over time. The Proposition implies that θ_{rt} should fall over time (relative to the omitted category). The Proposition is ambiguous about the trend of θ_{cog} relative to the omitted category, but does predict that θ_{cog} increases relative to θ_{rt}. Figure 6 plots the estimates of $\hat{\theta}_{rt}$ and $\hat{\theta}_{cog}$.

The figure shows that from the early 1980s onwards, the estimated fixed effects for routine occupations have a clear downward trend. Meanwhile, the corresponding fixed effects for non-routine cognitive occupations show an upward trend, particularly from the 1990s onwards.\footnote{This is consistent with Acemoglu and Autor (2011), who talk about two different ‘eras’ in the changes in the distribution of wages: 1974-1988 and 1988-2008. During the first period, earnings increased monotonically with the percentile in the earnings distribution. During the second period, in contrast, growth of wages by percentiles is polarized, or U-shaped. The U-shape is more pronounced during the period 1988-1999. For employment shares, they also document a U-shaped pattern during the 1990s.}

Note that all of the coefficients for the latter periods are significantly different from zero. This means that the data agree with the predictions of the model for wage stayers: Wages fall significantly and by a substantial magnitude for stayers in routine occupations, relative to stayers in either of the non-routine categories. The data also show a significant increase in the wage for stayers in non-routine cognitive relative to stayers in non-routine manual.

6.2.2 Wage growth according to direction of switch

Next I study the wage changes for routine workers who follow different switching patterns. Table 7 restricts the sample to routine workers only (both stayers and switchers). The dependent variable is the wage change, and the regressors are dummies for the direction of occupational switching (either to non-routine cognitive or to non-routine manual). Staying in routine jobs is the omitted category. The estimated coefficients reflect the differential wage growth for each type of switcher, relative to the stayers. Column (1) defines switchers and stayers based on individuals’ occupational codes in years t and $t + 1$, while the remaining columns are based on the codes in years t and $t + 2$.

\footnote{This is consistent with Acemoglu and Autor (2011), who talk about two different ‘eras’ in the changes in the distribution of wages: 1974-1988 and 1988-2008. During the first period, earnings increased monotonically with the percentile in the earnings distribution. During the second period, in contrast, growth of wages by percentiles is polarized, or U-shaped. The U-shape is more pronounced during the period 1988-1999. For employment shares, they also document a U-shaped pattern during the 1990s.}
Panel A uses changes in real wages, while Panel B uses changes in fitted model wages, that is, changes over time in $\tilde{\theta}_{jt} + \tilde{\gamma}_{ij}$. For reference purposes, Panel C reports the percentage of routine workers classified into each of the switching categories.

The Table shows significantly lower wage growth for switchers to non-routine manual over horizons up to two years, both for real and for fitted model wages. This negative differential, however, goes away when considering longer horizons (10 years), becoming positive and significant. For example, when using fitted model wages, workers switching from a routine job in year t to a non-routine manual job in year $t + 2$ experience a wage change that is 14% lower than that experienced by stayers in routine jobs. By year $t + 10$ however, the wage change for these workers is 5% above that of stayers.

Over all time horizons, those who switch to non-routine cognitive have significantly faster wage growth than stayers. Fitted model wages grow 12% faster over a two-year period for switchers to non-routine cognitive occupations, relative to those who stay in routine jobs. The figure is similar (14%) over a 10 year horizon.

Columns (5) and (6) in the Table show interesting differences between the periods before and after 1990. The wage gains for those who switch to non-routine cognitive are substantially larger after 1990 (18% above stayers in terms of fitted model wages after 1990, relative to 5% in the earlier period), while the wage cuts for those who switch to non-routine manual are somewhat smaller in magnitude (13% below stayers in terms of fitted model wages after 1990, relative to 15% in the earlier period).

In summary, the findings on wage changes for switchers also provide support for the predictions of the model regarding the effects of RBTC. Workers switching to non-routine cognitive jobs perform better in terms of wage growth than those staying in routine occupations, as do those who switch to non-routine manual jobs, at least over longer horizons.

7 Conclusions

This paper derives the individual-level effects of routinization-biased technical change in a model of occupational sorting, and provides empirical evidence on the labor market experience of workers holding routine jobs during the past three decades in the United States.

Consistent with the prediction of the model, the data show strong evidence of selection on ability in occupational mobility out of routine occupations: workers of relatively high ability are more likely to switch to non-routine cognitive jobs, and workers of relatively low ability are more likely to switch to non-routine manual ones. Interestingly, after the 1990s, the probability of switching to non-routine cognitive jobs increases more than the probability of switching to non-routine manual jobs for routine workers at all ability quintiles. This suggests that there has not been a large displacement of middle-skill workers towards low-skill jobs in the 1990s or 2000s, as has been sometimes assumed.
In terms of wage growth, also consistent with the prediction of the model, workers staying in routine jobs perform significantly worse than workers staying in any other type of occupation. This is due to a substantial fall in the wage premium for routine occupations, which is not driven by changes in the composition of the workers in terms of their skill level, or by changes in the return to education. Meanwhile, switchers from routine to non-routine manual suffer substantial wage cuts relative to stayers over horizons of up to two years, but those wage cuts disappear over time. Workers who switch from routine to non-routine cognitive jobs have significantly higher wage growth than stayers over a variety of time horizons.

The results in the paper provide micro-level evidence for the dynamics underlying the aggregate patterns of changes in employment shares and mean wages across major occupation groups. The paper finds that a model of occupational sorting with routine-biased technical change is able to rationalize many of the individual-level facts concerning the labor market experience of routine workers in the United States in the past three decades. The fact that there is a continuum of skills and three occupations, as in Jung and Mercenier (2010), rather than a continuum of occupations and three skill groups, as in Acemoglu and Autor (2011), is crucial, as it allows for the (empirically relevant) differentials in the wage changes for workers with different occupational switching trajectories.

Thinking of occupational mobility and wage changes in the context of routine-biased technical change gives a new perspective on the findings in the literature on occupational mobility which uses individual-level data. For example, part of the increase in mobility found in Kambourov and Manovskii (2008), and part of the U-shaped pattern in occupational switching found in Groes et al. (2009) may be related to the process of routinization.

In future work, it would be interesting to formally decompose the changing aggregate shares of employment of the three major occupation groups into changes in exit rates and changes in the patterns of occupational choice of new entrants to the labor market, in order to have a more precise estimate of the extent of job displacement that could be attributed to routine-biased technical change.

Another important avenue for future work would be to consider the implications of occupation-specific skills (Kambourov and Manovskii, 2009) within the context of the model discussed in this paper. Workers that have built more human capital specific to routine jobs (generally older workers) will have a lower incentive to switch out of those jobs, even if the prospective wage growth in their occupation is low, as they would face a large human capital loss from switching occupations. This consideration would be less important for younger workers. The ability cutoffs at which young and old routine workers decide to switch occupations, then, would not be the same.

Extending the model in this way would induce a dynamic aspect to workers’ switching decisions. A worker with specific human capital who switches occupations would be trading off an initial loss of specific human capital against the access to an occupation with a steeper
wage profile. This type of consideration could explain the findings in this paper regarding the wage changes for switchers to non-routine manual occupations. They experience an initial wage cut but subsequently recover from it, as wages in non-routine manual occupations are growing faster than they do in routine ones.
A Proposition Proofs

A.1 Proof of Proposition 1

First, consider the signs of the partial derivatives of Equations (13) to (15). Using the fundamental theorem of calculus, we have that:

\[\text{man}'(z_0) \equiv \frac{\partial \text{man}(z_0)}{\partial z_0} = \varphi_{\text{man}}(z_0)g(z_0) > 0 \] \hspace{1cm} (29)

\[\text{rt}_0(z_0, z_1) \equiv \frac{\partial \text{rt}(z_0, z_1)}{\partial z_0} = -\varphi_{\text{rt}}(z_0)g(z_0) < 0 \] \hspace{1cm} (30)

\[\text{rt}_1(z_0, z_1) \equiv \frac{\partial \text{rt}(z_0, z_1)}{\partial z_1} = \varphi_{\text{rt}}(z_1)g(z_1) > 0 \] \hspace{1cm} (31)

\[\text{cog}'(z_1) \equiv \frac{\partial \text{cog}(z_1)}{\partial z_1} = -\varphi_{\text{cog}}(z_1)g(z_1) < 0 \] \hspace{1cm} (32)

Intuitively, increases in \(z_0 \) (given \(z_1 \)) increase the measure of workers performing non-routine manual tasks, and decrease the measure of workers performing routine tasks. Increases in \(z_1 \) (given \(z_0 \)) increase the measure of workers performing routine tasks, and decrease the measure of workers performing non-routine cognitive tasks.

Meanwhile, based on the assumptions on absolute and comparative advantage across skill groups (Equation (5)), we have that \(\alpha_0 \) and \(\tilde{\alpha}_1 \) are decreasing functions in their respective arguments. That is:

\[\alpha'_0(z_0) = \frac{d \ln \varphi_{\text{man}}}{dz_0} - \frac{d \ln \varphi_{\text{rt}}}{dz_0} < 0 \] \hspace{1cm} (33)

\[\tilde{\alpha}'_1(z_1) = \frac{\varphi_{\text{rt}}(z_1)}{\varphi_{\text{cog}}(z_1) + \varphi_{\text{rt}}(z_1)} \left[\frac{d \ln \varphi_{\text{rt}}}{dz_1} - \frac{d \ln \varphi_{\text{cog}}}{dz_1} \right] < 0 \] \hspace{1cm} (34)

It follows that \(\Delta > 0 \) and the signs of the general equilibrium effects of a change in \(\ln \kappa_{\text{rt}} \) are as indicated in Proposition 1.

A.2 Proof of Proposition 2

\(C_{\text{man}} \) is constant, as it is equal to \(p_1 \) which is normalized to 1. So \(d \ln C_{\text{man}}/d \ln \kappa_{\text{rt}} = 0 \).

From Equation (6),

\[\ln C_{\text{rt}} = \ln \left(\frac{\varphi_{\text{man}}(z_0)}{\varphi_{\text{rt}}(z_0)} \right) + \ln C_{\text{man}} \]

\[= \alpha_0(z_0) + \ln C_{\text{man}} \]
So:

\[
\frac{d\ln C_{rt}}{d\ln \kappa_{rt}} = \alpha_0'(z_0) \frac{dz_0}{d\ln \kappa_{rt}} + \frac{d\ln C_{man}}{d\ln \kappa_{rt}}
\]

\[
= \alpha_0'(z_0) \frac{dz_0}{d\ln \kappa_{rt}}
\]

From Proposition 1 and its proof, \(dz_0/d\ln \kappa_{rt} > 0\) and \(\alpha_0'(z_0) < 0\). Therefore, \(d\ln C_{rt}/d\ln \kappa_{rt} < 0\).

From Equation (7),

\[
\ln C_{cog} = \ln \left(\frac{\varphi_{rt}(z_1)}{\varphi_{cog}(z_1)} \right) + \ln C_{rt}
\]

\[
= \alpha_1(z_1) + \ln C_{rt}
\]

So:

\[
\frac{d\ln C_{cog}}{d\ln \kappa_{rt}} = \alpha_1'(z_1) \frac{dz_1}{d\ln \kappa_{rt}} + \frac{d\ln C_{rt}}{d\ln \kappa_{rt}}
\]

Given the assumptions on comparative advantage, \(\alpha_1'(z_1) < 0\). From Proposition 1, \(dz_1/d\ln \kappa_{rt} < 0\), so the first term is positive. However, \(d\ln C_{man}/d\ln \kappa_{rt} < 0\), so the sign of \(d\ln C_{cog}/d\ln \kappa_{rt}\) is ambiguous.

From Equation (7),

\[
\ln \left(\frac{C_{cog}}{C_{rt}} \right) = \alpha_1(z_1)
\]

So:

\[
\frac{d\ln(C_{cog}/C_{rt})}{d\ln \kappa_{rt}} = \alpha_1'(z_1) \frac{dz_1}{d\ln \kappa_{rt}}
\]

which is unambiguously positive and implies:

\[
\frac{d\ln C_{cog}}{d\ln \kappa_{rt}} > \frac{d\ln C_{rt}}{d\ln \kappa_{rt}}
\]

A.3 Proof of Proposition 3

For non-switchers, the proof follows directly from Proposition 2. For switchers, the proof is as follows.

Consider first switchers to non-routine manual, that is, workers with ability \(z \in [z_0, z'_0]\). The first term, \(d\ln C_{man}/d\ln \kappa_{rt}\) is zero. Now, recall that before the shock to \(\kappa_{rt}\), all workers with \(z \in [z_0, z_1]\) were optimally sorting into routine jobs, meaning that, given their skill level and the pre-shock equilibrium values of \(C_{man}\) and \(C_{rt}\), the wage they would have earned in non-routine manual jobs was lower than the wage they were earning in routine jobs. Formally, this means: \(\ln C_{rt} + \ln \varphi_{rt}(z) > \ln C_{man} + \ln \varphi_{man}(z)\) for all workers with ability \(z \in [z_0, z'_0]\). It follows that the wage change for workers in this ability range is unambiguously negative.
Now consider switchers to non-routine cognitive occupations, that is, workers with ability \(z \in [z'_1, z_1) \). First consider a worker of ability \(z'_1 \). As \(z'_1 \) is the new cutoff, it must be the case that this worker is indifferent between working in a routine or a non-routine cognitive job, or in other words, the wage change he experiences if he switches or he stays should be the same. This implies:

\[
\frac{d \ln w(z'_1)}{d \ln \kappa_{rt}} = \frac{d \ln C_{cog} + \ln C_{cog} + \ln \varphi_{cog}(z'_1) - (\ln C_{rt} + \ln \varphi_{rt}(z'_1))}{d \ln \kappa_{rt}} < 0
\]

where the second line is the wage change if the worker had not switched occupations, which must be equal to the first line due to the indifference condition between switching and staying.

This shows that a worker of ability \(z'_1 \) will experience a wage cut equal to that experienced by stayers in routine occupations. Now consider a worker of ability \(z_1 \). Before the shock these workers would have been indifferent between routine and non-routine cognitive jobs, meaning that \(\ln C_{cog} + \ln \varphi_{cog}(z_1) = \ln C_{rt} + \ln \varphi_{rt}(z_1) \). It follows then that:

\[
\frac{d \ln w(z_1)}{d \ln \kappa_{rt}} = \frac{d \ln C_{cog} + \ln C_{cog} + \ln \varphi_{cog}(z_1) - (\ln C_{rt} + \ln \varphi_{rt}(z_1))}{d \ln \kappa_{rt}} > \frac{d \ln C_{cog}}{d \ln \kappa_{rt}}
\]

The wage change for workers of ability \(z_1 \) is unambiguously greater than the wage change for stayers in routine jobs. The conclusion is that, among the workers who switch to non-routine cognitive, the wage change is increasing in the worker’s ability level, and their wage change is greater or equal to that experienced by workers staying in routine occupations.

B Model Extension: Two-dimensional skills

This section describes how the model can be extended to account for two-dimensional skills that are rewarded differently in different occupations. It is shown that, by imposing certain restrictions on the variances of those skills in the population and the differences in the returns across occupations, the predictions of the model are still valid in expectations.

In particular, assume that workers are endowed with a certain level of cognitive skills \(z_i^{cog} \) and manual skills \(z_i^{man} \). The marginal productivity of these skills varies across occupations.
For simplicity, assume that only cognitive skills are productive in non-routine cognitive occupations, and only manual skills are productive in non-routine manual occupations. Both types of skills are productive in routine occupations.

The marginal productivity of an individual with skills \(\{z_i^{\text{cog}}, z_i^{\text{man}}\} \) is given by:

\[
\ln \varphi_j(z_i) = \begin{cases}
 b_{\text{man}}^{\text{man}} z_i^{\text{man}} & \text{in non-routine manual jobs} \\
 b_{\text{man}}^{\text{man}} z_i^{\text{man}} + b_{\text{cog}}^{\text{cog}} z_i^{\text{cog}} & \text{in routine jobs} \\
 b_{\text{cog}}^{\text{cog}} z_i^{\text{cog}} & \text{in non-routine cognitive jobs}
\end{cases}
\]

where the subscript on \(b \) indicates the occupation and the superscript indicates the type of skill.

The predictions of the model in terms of the sorting patterns and the switches induced by routinization will still be true if the following conditions hold:

\[\text{Cov}\{w_j(z_i^{\text{man}}, z_i^{\text{cog}}) - w_{\text{rt}}(z_i^{\text{man}}, z_i^{\text{cog}}), w_{\text{rt}}(z_i^{\text{man}}, z_i^{\text{cog}})\} > 0\] (35)

\[\text{Cov}\{w_j(z_i^{\text{man}}, z_i^{\text{cog}}) - w_{\text{rt}}(z_i^{\text{man}}, z_i^{\text{cog}}), w_{\text{rt}}(z_i^{\text{man}}, z_i^{\text{cog}})\} < 0\] (36)

where \(w_j(z_i^{\text{man}}, z_i^{\text{cog}}) \) are the wages received in occupation \(j \) by a worker of skills \(\{z_i^{\text{cog}}, z_i^{\text{man}}\} \).

The covariances imply that routine workers with higher wages will in expectation be the ones with more to gain from switching to non-routine cognitive, while the workers with relatively lower wages will in expectation be the ones with more to gain from switching to non-routine manual.

Assume that the endowments of the two types of skills are independently distributed in the population, so that \(\text{Cov}(z_i^{\text{man}}, z_i^{\text{cog}}) = 0 \). The variances of each of the two types of skills are denoted \(\sigma_{\text{man}}^2 \) and \(\sigma_{\text{cog}}^2 \). Using these assumptions, along with the equation for log wages (23) and the assumption for \(\ln \varphi_j(z_i) \), Equation (35) implies:

\[\text{Cov}\{\theta_{\text{cog}} - \theta_{\text{rt}} + (b_{\text{cog}}^{\text{cog}} - b_{\text{cog}}^{\text{rt}}) z_i^{\text{cog}} - b_{\text{man}}^{\text{man}} z_i^{\text{man}}, \theta_{\text{rt}} + b_{\text{cog}}^{\text{cog}} z_i^{\text{cog}} + b_{\text{man}}^{\text{man}} z_i^{\text{man}}\} > 0\]

\[\text{(b}_{\text{cog}}^{\text{cog}} - b_{\text{cog}}^{\text{rt}}) b_{\text{cog}}^{\text{cog}} \sigma_{\text{cog}}^2 - (b_{\text{man}}^{\text{man}})^2 \sigma_{\text{cog}}^2 > 0\] (37)

That is:

\[\text{(b}_{\text{cog}}^{\text{cog}} - b_{\text{cog}}^{\text{rt}}) b_{\text{cog}}^{\text{cog}} \sigma_{\text{cog}}^2 > (b_{\text{man}}^{\text{man}})^2 \sigma_{\text{cog}}^2\]

And Equation (36) implies:

\[\text{Cov}\{\theta_{\text{man}} - \theta_{\text{rt}} + (b_{\text{man}}^{\text{man}} - b_{\text{man}}^{\text{man}}) z_i^{\text{man}} - b_{\text{cog}}^{\text{cog}} z_i^{\text{cog}} - \theta_{\text{rt}} + b_{\text{cog}}^{\text{cog}} z_i^{\text{cog}} + b_{\text{man}}^{\text{man}} z_i^{\text{man}}\} < 0\]

\[\text{(b}_{\text{man}}^{\text{man}} - b_{\text{man}}^{\text{man}}) b_{\text{man}}^{\text{man}} \sigma_{\text{man}}^2 - (b_{\text{cog}}^{\text{cog}})^2 \sigma_{\text{cog}}^2 < 0\]

31
That is:

\[(b_{\text{man}} - b_{\text{man}}^*)b_{\text{man}}^* \sigma_{\text{man}}^2 < (b_{\text{cog}})^2 \sigma_{\text{cog}}^2\]

Equations (37) and (38) provide restrictions on the dispersion of skills in the population, and on the returns to skills in the different occupations. As long as these two equations hold, the predicted patterns of occupational switching described in the paper go through.

Note that the restrictions allow for returns to manual skills to be largest in non-routine manual occupations (that is \((b_{\text{man}} - b_{\text{man}}^*) > 0\)), as long as the variance of cognitive skills in the population is large enough relative to the variance of manual skills.

C Empirical Strategy Extension: Changing returns to observable ability

The empirical strategy may be extended to allow changes over time in the return to observable characteristics that affect ability. There is evidence that the college premium has changed over the past four decades in the United States (see for example Goldin and Katz (2008) and Acemoglu and Autor (2011)).

To account for this, Equation (26) can be modified to allow \(\beta_j\) to vary with \(t\). That is:

\[
\ln \varphi_j(z_{it}) = X_{it} \beta_{jt} + \eta_i b_j
\]

The maintained assumption is that \(b_j\), the return to unobservable ability, is not time-varying.

I will focus on an individual’s education level as the key component of observable ability. As education is fixed over time for each individual \(i\),\(^{39}\) I will omit the subscript \(t\) and think of \(X_i\) as education. For simplicity, assume that the time variation in the return to education is the same for all occupations; that is: \(\beta_{jt} = \beta_j + \beta_t\). Then, the potential wages for individual \(i\) in occupation \(j\) at time \(t\) would be given by:

\[
\ln w_{ijt} = \tilde{\theta}_{jt} + X_i \beta_j + X_i \beta_t + \eta_i b_j + \tilde{\tau}_t + \epsilon_{it}
\]

where \(\epsilon_{it}\) is measurement error, which as before is orthogonal to education, ability and the wage premia, and is independent of sector affiliation.

The following equation can be estimated using occupation spell fixed effects:

\[
\ln w_{it} = \sum_j D_{ijt} \tilde{\theta}_{jt} + X_i \beta_t + \sum_j D_{ijt} \nu_{ij} + \tilde{\tau}_t + \epsilon_{it}
\]

\(^{39}\)The PSID does not ask individuals their education level every year. Therefore, I assign each individual their highest reported education level in any survey year, making this a non-time varying characteristic.
where ν_{ij} are the occupation spell fixed effects, and they are such that $\nu_{ij} \equiv X_i \beta_j + \eta_i b_j$. The estimated occupation spell fixed effects will now be purged of the time-varying return to education and will capture only the return to ability that is not time-varying. Rankings on ability can now be constructed based on $X_i \hat{\beta}_t + \hat{\nu}_{ij}$.

I classify individuals into four occupation groups: high school dropouts, high school graduates, some college, and college graduates. The estimation strategy allows identification of changes in the return to education relative to a base year, and relative to the analogous change experienced by an excluded education category.

Figure 7 shows the estimated returns to education for high school dropouts, workers with some college education, and college graduates, relative to the base year (1976) and relative to the omitted education category (high school graduates). The Figure confirms the finding in the literature that there has been an important rise in the return to college degrees, particularly during the 1980s and up to the mid-1990s.

Table 8 shows the results for switching patterns according to ability quintiles, and confirms the findings from the main body of the paper: workers in the middle of the distribution are less likely to switch than those at the extremes, and there is selection on ability in the direction of switching.

Figure 8 plots the new estimated occupation-year fixed effects. Changing returns to education account for a sizable portion of the increase in the return to non-routine cognitive jobs that was observed in Figure 6. However, the pattern remains such that the wage premium in routine occupations experiences a substantial fall relative to the wage premium in either of the non-routine occupational categories.

Finally, Table 9 confirms that the results in terms of wage changes for switchers presented in the main body of the paper also go through when allowing for changing returns to education.

\section*{D \hspace{1em} Grouping of Occupation Codes}

See Table 10.

\footnote{As before, when estimating the wage equation, controls for union status, marital status, SMSA and region are added to the regression.}
References

Figure 1: Effects of Routine-Biased Technical Change on skill cutoffs and wages (case with no change in C_{cog})
Figure 2: Employment Shares across Broad Occupations, Men, PSID

Note: Sample includes male household heads aged 16 to 64 employed in non-agricultural, non-military jobs, who are part of the PSID’s core sample. nr_cog stand for non-routine cognitive; nr_man stands for non-routine manual. See Data Section for details on the occupation classification.
Figure 3: Mean Real Wages by Broad Occupation, Men

Real Wages, SRC Men

Note: Means are of log wages in 1979 dollars. Observations with log real hourly wages below $1.1 1979 dollars or above $54.6 1979 dollars excluded. Sample includes male household heads aged 16 to 64 employed in non-agricultural, non-military jobs, who are part of the PSID’s core sample. nr_cog stand for non-routine cognitive; nr_man stands for non-routine manual. See Data Section for details on the occupation classification.
Figure 4: Exit probabilities by ability quintile

Exit probabilities, routine workers, two years ahead
By quintile in the distribution of estimated individual fixed effects

1977-1989

1991-2005

Note: Sample includes workers in routine occupations, and plots their probability of switching out of this type of occupation between years t and $t + 2$, according to their ability quintile.
Figure 5: Direction of switch by ability quintile

Exit probabilities, routine workers
According to direction of switch, by ability quintile

1977-1989

1991-2005

Note: Sample includes workers in routine occupations, and plots their probability of switching to the different non-routine occupations between years t and $t + 2$, according to their ability quintile.
Figure 6: Estimated coefficients on occupation-year dummies

Note: The figure shows the estimates of $\hat{\theta}_{rt}$ and $\hat{\theta}_{cog}$ obtained from the wage equation with individual fixed effects and additional controls (Equation (28)). Stars denote the level at which the estimated coefficients are significantly different from zero.
Figure 7: Education effects

Note: Estimated coefficients are obtained from the estimation of the wage equation (41). Stars denote the level at which the estimated coefficients are significantly different from zero.
Figure 8: Estimated coefficients on occupation-year dummies

Note: Estimated coefficients are obtained from the estimation of the wage equation (41). Stars denote the level at which the estimated coefficients are significantly different from zero.
Table 1: Descriptive Statistics (1976-2007)

<table>
<thead>
<tr>
<th></th>
<th>nr_cog (Prof, Manag, Tech)</th>
<th>routine (Prodctn, Operators, Clerical)</th>
<th>nr_man (Service)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr of Obs</td>
<td>21,431</td>
<td>25,861</td>
<td>3,477</td>
</tr>
<tr>
<td>Share</td>
<td>0.42</td>
<td>0.51</td>
<td>0.07</td>
</tr>
<tr>
<td>Averages:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real Wages</td>
<td>11.96</td>
<td>7.02</td>
<td>5.94</td>
</tr>
<tr>
<td>Age</td>
<td>40.67</td>
<td>38.24</td>
<td>37.40</td>
</tr>
<tr>
<td>Fractions within the occupation group:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union</td>
<td>0.07</td>
<td>0.25</td>
<td>0.26</td>
</tr>
<tr>
<td>H.S. Dropout</td>
<td>0.02</td>
<td>0.15</td>
<td>0.11</td>
</tr>
<tr>
<td>H.S. Grad</td>
<td>0.16</td>
<td>0.50</td>
<td>0.42</td>
</tr>
<tr>
<td>Some Coll.</td>
<td>0.22</td>
<td>0.24</td>
<td>0.32</td>
</tr>
<tr>
<td>College</td>
<td>0.60</td>
<td>0.11</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Note: Real wages are in 1979 dollars. Sample includes male household heads aged 16 to 64 employed in non-agricultural, non-military jobs, who are part of the PSID’s core sample.
Table 2: Regressions of the probability of switching two years ahead for routine workers on dummies for ability quintiles (odd years only)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>q-1</td>
<td>.004 (.015)</td>
<td>.052 (.014)****</td>
</tr>
<tr>
<td>q-2</td>
<td>-.018 (.014)</td>
<td>.0002 (.013)</td>
</tr>
<tr>
<td>q-4</td>
<td>-.025 (.014)*</td>
<td>.011 (.013)</td>
</tr>
<tr>
<td>q-5</td>
<td>.088 (.014)****</td>
<td>.093 (.013)****</td>
</tr>
<tr>
<td>Const.</td>
<td>.112 (.010)****</td>
<td>.132 (.009)****</td>
</tr>
<tr>
<td>Obs.</td>
<td>5181</td>
<td>7512</td>
</tr>
</tbody>
</table>

Note: Sample includes workers in routine occupations. The dependent variable is a dummy equal to 1 if the worker is employed in a routine occupation in year t and in a non-routine occupation in year $t + 2$. q-1 through q-5 represent dummies for the individual workers’ estimated ability quintiles among routine workers in year t. q-1 represents the lowest ability workers and q-5 the highest ability workers. q-3 is the omitted category. Ability quintiles are built based on estimated individual-occupation fixed effects.
Table 3: Regressions of the probability of switching to particular occupations two years ahead for routine workers (odd years only, 1977-2005)

<table>
<thead>
<tr>
<th></th>
<th>P(nr_cog)</th>
<th>P(nr_man)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Const.</td>
<td>.104</td>
<td>.019</td>
</tr>
<tr>
<td></td>
<td>(.005)***</td>
<td>(.002)***</td>
</tr>
<tr>
<td>post91</td>
<td>.030</td>
<td>.011</td>
</tr>
<tr>
<td></td>
<td>(.006)***</td>
<td>(.003)***</td>
</tr>
<tr>
<td>Obs.</td>
<td>12693</td>
<td>12693</td>
</tr>
</tbody>
</table>

Note: Sample includes workers in routine occupations in year t. In Column (1), the dependent variable is a dummy equal to 1 if the worker is employed in a non-routine cognitive occupation in year $t + 2$. In Column (2), the dependent variable is a dummy equal to 1 if the worker is employed in a non-routine manual occupation in year $t + 2$. post91 is a dummy for years from 1991 onwards.
Table 4: Regressions of the probability of switching to particular occupations two years ahead for routine workers (odd years only)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>q-1</td>
<td>-.121 (.013)***</td>
<td>-.090 (.012)***</td>
<td>.036 (.006)***</td>
<td>.048 (.006)***</td>
</tr>
<tr>
<td>q-2</td>
<td>-.114 (.013)***</td>
<td>-.113 (.012)***</td>
<td>.008 (.006)***</td>
<td>.019 (.006)***</td>
</tr>
<tr>
<td>q-3</td>
<td>-.099 (.013)***</td>
<td>-.101 (.012)***</td>
<td>.010 (.006)***</td>
<td>.008 (.006)***</td>
</tr>
<tr>
<td>q-4</td>
<td>-.116 (.013)***</td>
<td>-.102 (.012)***</td>
<td>.003 (.006)***</td>
<td>.020 (.006)***</td>
</tr>
<tr>
<td>Const.</td>
<td>.193 (.009)***</td>
<td>.215 (.009)***</td>
<td>.008 (.004)*</td>
<td>.010 (.004)**</td>
</tr>
<tr>
<td>Obs.</td>
<td>5181 7512</td>
<td>5181 7512</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Sample includes workers in routine occupations in year t. In Columns (1) and (2), the dependent variable is a dummy equal to 1 if the worker is employed in a non-routine cognitive occupation in year $t + 2$. In Columns (3) and (4), the dependent variable is a dummy equal to 1 if the worker is employed in a non-routine manual occupation in year $t + 2$. q-1 through q-4 represent dummies for the individual workers’ estimated ability quintiles among routine workers in year t (with q-1 representing the lowest ability workers). Workers at the top end of the ability distribution (q-5) are the omitted category. Ability quintiles are based on estimated individual-occupation fixed effects.
Table 5: Regression of changes in log real wages over different time horizons on dummies for initial occupation

<table>
<thead>
<tr>
<th></th>
<th>Change in log real wages between year t and year:</th>
<th>$t + 1$</th>
<th>$t + 2$</th>
<th>$t + 4$</th>
<th>$t + 10$</th>
<th>$t + 15$</th>
<th>$t + 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>nr-cog</td>
<td></td>
<td>-.016</td>
<td>-.017</td>
<td>-.013</td>
<td>.006</td>
<td>.013</td>
<td>.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.006)**</td>
<td>(.006)**</td>
<td>(.010)</td>
<td>(.023)</td>
<td>(.034)</td>
<td>(.060)</td>
</tr>
<tr>
<td>routine</td>
<td></td>
<td>-.029</td>
<td>-.041</td>
<td>-.062</td>
<td>-.105</td>
<td>-.166</td>
<td>-.170</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.006)**</td>
<td>(.006)**</td>
<td>(.009)**</td>
<td>(.022)**</td>
<td>(.032)**</td>
<td>(.059)**</td>
</tr>
<tr>
<td>Const.</td>
<td></td>
<td>.044</td>
<td>.121</td>
<td>.078</td>
<td>.103</td>
<td>.153</td>
<td>.216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.008)**</td>
<td>(.010)**</td>
<td>(.013)**</td>
<td>(.025)**</td>
<td>(.035)**</td>
<td>(.060)**</td>
</tr>
<tr>
<td>Obs.</td>
<td>31328</td>
<td>37114</td>
<td>30255</td>
<td>16072</td>
<td>8433</td>
<td>3752</td>
<td></td>
</tr>
<tr>
<td># of Indiv.</td>
<td>3855</td>
<td>4764</td>
<td>4129</td>
<td>2756</td>
<td>1848</td>
<td>1225</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>.014</td>
<td>.02</td>
<td>.026</td>
<td>.046</td>
<td>.065</td>
<td>.062</td>
<td></td>
</tr>
</tbody>
</table>

Note: nr-cog is a dummy equal to 1 if the individual is employed in a non-routine cognitive occupation at time t. routine is a dummy equal to 1 if the individual is employed in a routine occupation at time t. Workers employed in a non-routine manual occupation at time t are the omitted category. All regressions include year dummies. Observations with log real hourly wages below 0.1 ($1.1\, 1979$ dollars) or above 4 ($54.6\, 1979$ dollars) excluded. Standard errors are clustered at the individual level. Due to data constraints, Column (1) uses data only up to 1997.
Table 6: Regression of changes in log real wages over different time horizons on dummies for initial occupation for workers who do not switch occupations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>nr-cog</td>
<td>.010</td>
<td>.019</td>
<td>.027</td>
<td>.060</td>
<td>.010</td>
<td>.027</td>
</tr>
<tr>
<td></td>
<td>(.004)**</td>
<td>(.005)**</td>
<td>(.008)**</td>
<td>(.023)**</td>
<td>(.008)***</td>
<td>(.006)**</td>
</tr>
<tr>
<td>routine</td>
<td>-.009</td>
<td>-.018</td>
<td>-.038</td>
<td>-.079</td>
<td>-.024</td>
<td>-.014</td>
</tr>
<tr>
<td></td>
<td>(.004)**</td>
<td>(.005)**</td>
<td>(.008)**</td>
<td>(.022)**</td>
<td>(.007)**</td>
<td>(.006)**</td>
</tr>
<tr>
<td>Const.</td>
<td>.020</td>
<td>.094</td>
<td>.043</td>
<td>.069</td>
<td>.101</td>
<td>.115</td>
</tr>
<tr>
<td></td>
<td>(.007)**</td>
<td>(.009)**</td>
<td>(.012)**</td>
<td>(.025)**</td>
<td>(.011)**</td>
<td>(.009)**</td>
</tr>
<tr>
<td>Obs.</td>
<td>28029</td>
<td>31930</td>
<td>25389</td>
<td>13439</td>
<td>15999</td>
<td>15931</td>
</tr>
<tr>
<td># of Indiv.</td>
<td>3750</td>
<td>4518</td>
<td>3832</td>
<td>2540</td>
<td>2650</td>
<td>3538</td>
</tr>
<tr>
<td>R^2</td>
<td>.016</td>
<td>.026</td>
<td>.034</td>
<td>.057</td>
<td>.025</td>
<td>.022</td>
</tr>
</tbody>
</table>

Note: Workers staying in non-routine manual occupations are the omitted category. All regressions include year dummies. The wage changes are taken over the time horizons indicated above each column (in years). The sample includes only occupational stayers. For column (1), stayers are defined as workers in the same broad occupation in years t and t + 1. For column (2) onwards, stayers are defined as workers in the same broad occupation in years t and t + 2 (even though the wage change may be taken over a longer horizon). Observations with log real hourly wages below 0.1 ($1.1 1979 dollars) or above 4 ($54.6 1979 dollars) excluded. Standard errors are clustered at the individual level.
Table 7: Wage changes for routine workers, according to direction of switch

Panel A: Dependent variable is change in log real wages

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>goto-nrcog</td>
<td>0.034</td>
<td>0.059</td>
<td>0.085</td>
<td>0.163</td>
<td>0.024</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>(0.008)**</td>
<td>(0.008)**</td>
<td>(0.010)**</td>
<td>(0.019)**</td>
<td>(0.013)*</td>
<td>(0.011)**</td>
</tr>
<tr>
<td>goto-nrman</td>
<td>-0.112</td>
<td>-0.143</td>
<td>-0.035</td>
<td>0.115</td>
<td>-0.162</td>
<td>-0.128</td>
</tr>
<tr>
<td></td>
<td>(0.023)**</td>
<td>(0.023)**</td>
<td>(0.026)</td>
<td>(0.046)**</td>
<td>(0.033)**</td>
<td>(0.031)**</td>
</tr>
<tr>
<td>Const.</td>
<td>0.037</td>
<td>0.066</td>
<td>0.016</td>
<td>-0.002</td>
<td>0.067</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>(0.007)**</td>
<td>(0.009)**</td>
<td>(0.011)</td>
<td>(0.018)</td>
<td>(0.009)**</td>
<td>(0.010)**</td>
</tr>
<tr>
<td>Obs.</td>
<td>15800</td>
<td>18341</td>
<td>14278</td>
<td>7568</td>
<td>9364</td>
<td>8977</td>
</tr>
<tr>
<td># of Indiv.</td>
<td>2655</td>
<td>3253</td>
<td>2701</td>
<td>1735</td>
<td>1810</td>
<td>2425</td>
</tr>
<tr>
<td>R²</td>
<td>0.013</td>
<td>0.028</td>
<td>0.033</td>
<td>0.061</td>
<td>0.025</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Panel B: Dependent variable is change in fitted model wages (in logs)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>goto-nrcog</td>
<td>0.086</td>
<td>0.122</td>
<td>0.098</td>
<td>0.139</td>
<td>0.050</td>
<td>0.180</td>
</tr>
<tr>
<td></td>
<td>(0.010)**</td>
<td>(0.009)**</td>
<td>(0.008)**</td>
<td>(0.011)**</td>
<td>(0.012)**</td>
<td>(0.011)**</td>
</tr>
<tr>
<td>goto-nrman</td>
<td>-0.152</td>
<td>-0.139</td>
<td>-0.030</td>
<td>0.054</td>
<td>-0.151</td>
<td>-0.128</td>
</tr>
<tr>
<td></td>
<td>(0.023)**</td>
<td>(0.021)**</td>
<td>(0.019)</td>
<td>(0.027)**</td>
<td>(0.032)**</td>
<td>(0.027)**</td>
</tr>
<tr>
<td>Const.</td>
<td>-0.038</td>
<td>0.026</td>
<td>0.049</td>
<td>-0.014</td>
<td>0.029</td>
<td>-0.034</td>
</tr>
<tr>
<td></td>
<td>(0.002)**</td>
<td>(0.003)**</td>
<td>(0.004)**</td>
<td>(0.008)*</td>
<td>(0.002)**</td>
<td>(0.004)**</td>
</tr>
<tr>
<td>Obs.</td>
<td>15800</td>
<td>18341</td>
<td>14278</td>
<td>7568</td>
<td>9364</td>
<td>8977</td>
</tr>
<tr>
<td># of Indiv.</td>
<td>2655</td>
<td>3253</td>
<td>2701</td>
<td>1735</td>
<td>1810</td>
<td>2425</td>
</tr>
<tr>
<td>R²</td>
<td>0.168</td>
<td>0.174</td>
<td>0.147</td>
<td>0.09</td>
<td>0.158</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Panel C: Fraction of routine workers in each of the switching categories (%)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>goto-nrcog</td>
<td>8.07</td>
<td>10.95</td>
<td>11.26</td>
<td>11.47</td>
<td>9.43</td>
<td>12.54</td>
</tr>
<tr>
<td>goto-nrman</td>
<td>1.51</td>
<td>2.18</td>
<td>1.92</td>
<td>1.88</td>
<td>1.83</td>
<td>2.55</td>
</tr>
</tbody>
</table>

Note: Workers who stay in routine occupations are the omitted category. All regressions include year dummies. The wage changes are taken over the time horizons indicated above each column (in years). For column 1, occupation transitions between years \(t \) and \(t + 1 \) are considered. For column 2 onwards, occupation transitions between years \(t \) and \(t + 2 \) are considered (even though the wage change may be taken over a longer horizon). Observations with log real hourly wages below 0.1 ($1.1 1979 dollars) or above 4 ($54.6 1979 dollars) excluded. Standard errors are clustered at the individual level.
Table 8: Regressions of the probability of switching two years ahead for routine workers (odd years only, 1977-2005)

<table>
<thead>
<tr>
<th></th>
<th>P(sw)</th>
<th>P(nr_cog)</th>
<th>P(nr_man)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>q-1</td>
<td>-.058</td>
<td>-.103</td>
<td>.045</td>
</tr>
<tr>
<td></td>
<td>(.010)**</td>
<td>(.009)**</td>
<td>(.004)**</td>
</tr>
<tr>
<td>q-2</td>
<td>-.099</td>
<td>-.114</td>
<td>.015</td>
</tr>
<tr>
<td></td>
<td>(.010)**</td>
<td>(.009)**</td>
<td>(.004)**</td>
</tr>
<tr>
<td>q-3</td>
<td>-.091</td>
<td>-.102</td>
<td>.011</td>
</tr>
<tr>
<td></td>
<td>(.010)**</td>
<td>(.009)**</td>
<td>(.004)**</td>
</tr>
<tr>
<td>q-4</td>
<td>-.092</td>
<td>-.107</td>
<td>.015</td>
</tr>
<tr>
<td></td>
<td>(.010)**</td>
<td>(.009)**</td>
<td>(.004)**</td>
</tr>
<tr>
<td>Const.</td>
<td>.213</td>
<td>.205</td>
<td>.008</td>
</tr>
<tr>
<td></td>
<td>(.007)**</td>
<td>(.006)**</td>
<td>(.003)**</td>
</tr>
<tr>
<td>Obs.</td>
<td>12530</td>
<td>12530</td>
<td>12530</td>
</tr>
</tbody>
</table>

Note: Sample includes workers in routine occupations in year t. In Column (1) the dependent variable is a dummy equal to 1 if the worker is employed in a non-routine occupation in year t + 2. In Column (2) the dependent variable is a dummy equal to 1 if the worker is employed in a non-routine cognitive occupation in year t + 2. In Column (3) the dependent variable is a dummy equal to 1 if the worker is employed in a non-routine manual occupation in year t + 2. q-1 through q-4 represent dummies for the individual workers’ estimated ability quintiles among routine workers in year t (with q-1 representing the lowest ability workers), obtained from the estimation of Equation (41). Workers at the top end of the ability distribution (q-5) are the omitted category.
Table 9: Wage changes for routine workers, according to direction of switch

Panel A: Dependent variable is change in fitted model wages (in logs)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>goto-nrcog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.089</td>
<td>.124</td>
<td>.100</td>
<td>.144</td>
<td>.069</td>
<td>.170</td>
</tr>
<tr>
<td></td>
<td>(.010)***</td>
<td>(.009)***</td>
<td>(.008)***</td>
<td>(.011)***</td>
<td>(.012)***</td>
<td>(.011)***</td>
</tr>
<tr>
<td>goto-nrman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.147</td>
<td>-.135</td>
<td>-.027</td>
<td>.062</td>
<td>-.146</td>
<td>-.126</td>
</tr>
<tr>
<td></td>
<td>(.023)***</td>
<td>(.021)***</td>
<td>(.020)</td>
<td>(.028)**</td>
<td>(.032)***</td>
<td>(.027)***</td>
</tr>
<tr>
<td>Const.</td>
<td>-.042</td>
<td>.032</td>
<td>.068</td>
<td>.018</td>
<td>.034</td>
<td>-.023</td>
</tr>
<tr>
<td></td>
<td>(.002)***</td>
<td>(.003)***</td>
<td>(.004)***</td>
<td>(.009)**</td>
<td>(.003)***</td>
<td>(.004)***</td>
</tr>
<tr>
<td>Obs.</td>
<td>15749</td>
<td>18188</td>
<td>14179</td>
<td>7548</td>
<td>9358</td>
<td>8830</td>
</tr>
<tr>
<td># of Indiv.</td>
<td>2632</td>
<td>3181</td>
<td>2649</td>
<td>1722</td>
<td>1808</td>
<td>2355</td>
</tr>
<tr>
<td>R^2</td>
<td>.171</td>
<td>.178</td>
<td>.15</td>
<td>.091</td>
<td>.184</td>
<td>.198</td>
</tr>
</tbody>
</table>

Panel B: Fraction of routine workers in each of the switching categories (%)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>goto-nrcog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.05</td>
<td>10.83</td>
<td>11.15</td>
<td>11.43</td>
<td>9.44</td>
<td>12.31</td>
</tr>
<tr>
<td>goto-nrman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.52</td>
<td>2.18</td>
<td>1.93</td>
<td>1.87</td>
<td>1.83</td>
<td>2.56</td>
</tr>
</tbody>
</table>

Note: Workers who stay in routine occupations are the omitted category. All regressions include year dummies. The wage changes are taken over the time horizons indicated above each column (in years). For column 1, occupation transitions between years t and $t + 1$ are considered. For column 2 onwards, occupation transitions between years t and $t + 2$ are considered (even though the wage change may be taken over a longer horizon). Standard errors are clustered at the individual level.
Table 10: Occupation Code Groupings

<table>
<thead>
<tr>
<th>Task label</th>
<th>Occupations included</th>
<th>3-digit Census Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1970-COC</td>
</tr>
<tr>
<td>nr_cog</td>
<td>Professional, technical and kindred workers</td>
<td>001-195</td>
</tr>
<tr>
<td></td>
<td>Professional and related occupations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Managers, officials and proprietors, except farm</td>
<td>201-245</td>
</tr>
<tr>
<td></td>
<td>Management, business and financial occupations</td>
<td>001-095</td>
</tr>
<tr>
<td></td>
<td>Managers of retail and non-retail sales workers</td>
<td>470-471</td>
</tr>
<tr>
<td>routine</td>
<td>Sales workers, except managers</td>
<td>260-285</td>
</tr>
<tr>
<td></td>
<td>Clerical and kindred workers</td>
<td>301-395</td>
</tr>
<tr>
<td></td>
<td>Office and administrative support occupations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Craftsmen, foremen and kindred workers</td>
<td>401-575</td>
</tr>
<tr>
<td></td>
<td>Operatives, except transport</td>
<td>601-695</td>
</tr>
<tr>
<td></td>
<td>Laborers, except farm</td>
<td>740-785</td>
</tr>
<tr>
<td></td>
<td>Construction and extraction occupations</td>
<td>620-694</td>
</tr>
<tr>
<td></td>
<td>Installation, maintenance and repair occupations</td>
<td>700-762</td>
</tr>
<tr>
<td></td>
<td>Production occupations</td>
<td>770-896</td>
</tr>
<tr>
<td></td>
<td>Transport equipment operatives</td>
<td>701-715</td>
</tr>
<tr>
<td></td>
<td>Transportation and material moving occupations</td>
<td>900-975</td>
</tr>
<tr>
<td>nr_man</td>
<td>Service workers</td>
<td>901-984</td>
</tr>
<tr>
<td>Not</td>
<td>Members of armed forces</td>
<td>600</td>
</tr>
<tr>
<td>classified</td>
<td>Farmers, farm managers, farm laborers, farm foremen</td>
<td>801-824</td>
</tr>
<tr>
<td></td>
<td>Farming, fishing and forestry occupations</td>
<td>600-613</td>
</tr>
</tbody>
</table>

Note: The 1970 Census Occupation Codes (COC) were used in the PSID up to 2001. Since 2003, the 2000 coding system has been used. Task labels are based on Acemoglu and Autor (2011). Occupation code groupings and details on the 3-digit codes can be found in the Working Paper version of Kambourov and Manovskii (2008) and on the IPUMS website (King et al., 2010): See http://usa.ipums.org/usa/volii/97occup.shtml for the 1970 codes and http://usa.ipums.org/usa/volii/00occup.shtml for the 2000 codes.