An Unobserved Components Approach to Separating Land from Structure in Property Prices: A Case Study for the City of Brisbane

Alicia N. Rambaldi(1), Ryan R. J. McAllister(2), Kerry Collins(2), Cameron S. Fletcher(3)

version: 23 June, 2011

(1) School of Economics, The University of Queensland, St Lucia, QLD 4072. Australia.
(2) Commonwealth Scientific and Industrial Research Organisation (CSIRO) Ecosystem Sciences, Boggo Road, Dutton Park, Brisbane, QLD 4102. Australia
(3) Commonwealth Scientific and Industrial Research Organisation (CSIRO) Ecosystem Sciences, PO Box 780, Atherton, QLD 4883. Australia

Abstract

The study develops a spatio-temporal model of hedonic pricing that explicitly separates the land and the structure components of property prices. This is illustrated with a dataset for Brisbane, Australia, constructed by combining commercial real estate, local government databases and GIS-based spatial analyzes. The land component of prices has increased from 42% in 2000 to 66% in 2010. This has implications for a broad range of planning and policy issues, including property tax rates, town planning, and options for climate adaptations.

Keywords: urban land prices, housing prices, state-space, unobserved components.

JEL: C5, C8, R1
1 Introduction

A property is a bundled good composed of an appreciating asset, land, and a depreciating asset, structure. The importance of this distinction is increasingly recognised in the real estate literature (see Bostic et al. (2007)) as well as in the price index construction literature (see Statistics Netherlands and EuroStat (2011), Chapter 13 and Diewert et al. (2010)). Bostic et al. (2007) provides an excellent exposition of the arguments. In particular, they argue that due to the mobility of materials and labor, construction costs are generally uniform within a housing market and thus it must be the case that asymmetric appreciation across properties within a market arise from asymmetric exposure to common shocks to land values.

At any point in time the value of the structure is its replacement cost less any accumulated depreciation. Thus, sufficiently large depreciation can result in the structure (improvements on the land) declining in value over time (see (Malpezzi et al., 1987) and (Knight and Sirmans, 1996) for an excellent discussion and treatment of modelling and accounting for depreciation and maintenance of the structure).

This study proposes the use of a hedonic based unobserved components approach. Specifically, land and structure are viewed as two additive components of the price. The underlying trend in each component is determined by hedonic characteristics intrinsic to that component. For instance, the size and age of the dwelling are unique characteristics of the structure, while the size of the parcel and distance to amenities are unique characteristics of the land. In particular, previous studies have identified the importance of the structure’s age and size, and lot size heterogeneity (Knight and Sirmans (1996) and Diewert et al. (2010)). The data used for this study are from the city of Brisbane, Australia, where there are two commercial providers of real estate transactions that cover most of the urbanized areas in the country. Unfortunately, the age of the structure (building age) and the size of the structure are not available through the datasets from these commercial providers. Thus, government databases with supplementary GIS-based spatial analyzes were used to assemble a unique set of hedonic attributes for an Australian dataset.

The method of estimation and imputation of the structure and land components of property values
used in this study is different from those in previous studies. An unobserved components approach
is used to estimate a time-varying hedonic model with attributes that capture: 1) structure, such
as the number of bedrooms, structure size and age; and 2) land, including lot size, location with
respect to landmarks, and location-related characteristics (e.g. frequency of flooding). There is
no common trend in the model as it would capture the combined trends in land and structure.
This problem was identified in studies using conventional hedonic models with an intercept term
(Diewert et al. (2010)). The method proposed allows identification of the land and structure com-
ponents of property prices through the memory built into the time-varying parameters associated
with specific hedonic characteristics of each component.

The paper is organised as follows: Section 2 presents the unobserved components model proposed
for the decomposition. This includes a spatially correlated error to account for omitted hedonic
characteristics that might create dependence in the random error component. Section 3 describes
that data used to illustrate the method. The dataset was assembled from a number of sources
and this is discussed in some detail. Section 4 presents the results and compares them to those
produced by the State Valuation Service of the Queensland’s government. Section 5 concludes.

2 Model

Similar to previous studies (Bostic et al. (2007) and Diewert et al. (2010)) three orthogonal
components are defined, land (L), structure (H) and noise. In this study these components are
defined within a time-varying parameter framework with spatial errors.

\[
\begin{align*}
 y_t &= X_t^L \beta_t^L + X_t^H \beta_t^H + \epsilon_t \\
 \epsilon_t &= \rho W_t \epsilon_{t-1} + u_t \\
 \beta_t^c &= \beta_{t-1}^c + \eta_t^c
\end{align*}
\]

where,
y_t vector sale price properties sold in t

X_t^c matrix hedonic characteristics associated with $c = L, H$ for properties sold in t

β_t^c vector hedonic coefficients associated with component $c = L, H$

ρ spatial correlation parameter

ϵ_t spatially correlated error

$u_t \sim N(0, \sigma_u^2 I)$

$\eta_t^c \sim N(0, \sigma_n^2 I)$

W_t a row stochastic spatial weights matrix, $W_t = \begin{cases} w_{ii,t} = 0 \\ w_{ij,t} \neq 0 \text{ if neighbouring} \end{cases}$

The model has no common intercept trend to avoid capturing combined trends of land and structure. In this paper the nearest neighbours are computed using a Delaunay triangulation. A detailed exposition of Delaunay triangulations can be found in LeSage and Pace (2009) Section 4.11. When W is derived using Delaunay triangles, it represents the nearest m neighbours, W^2 represents neighbours to neighbours, and so on.

The model (1) is cast in a state-space form,

\[
y_t = Z_t \alpha_t + \epsilon_t \\
\alpha_t = \alpha_{t-1} + \eta_t
\]

where,

$\epsilon_t \sim (0, H_t)$

$\eta_t \sim (0, Q_t)$

$\alpha_0 \sim (0, P_0)$

$Z_t = \begin{bmatrix} X_t^L & X_t^H \end{bmatrix}$, a $N_t \times K$ matrix, N_t is the number of properties sold in t; K is the number of hedonic characteristics (land plus structure).
\[
\alpha_t = \begin{bmatrix}
\beta^L_t \\
\beta^H_t
\end{bmatrix}
\]

\[
H_t = \sigma_u^2 (I_{N_t} - \rho W_t)^{-1} (I_{N_t} - \rho W_t)^{-\dagger}
\]

\[
Q_t = \sigma_\eta^2 I_K
\]

The parameters \(\alpha_t \) are estimated by a Kalman filter (KF) and smoother (S) given estimates of the hyperparameters, \(\psi = [\sigma_u^2, \sigma_\eta^2, \rho] \), which are estimated by maximum likelihood. The KF algorithm provides a value of the likelihood function to find the estimates of \(\psi \) in a standard state-space framework (see Harvey (1989) or Durbin and Koopman (2001)).

Given estimates of \(\alpha_t \), predictions of the sale price of the property, land and structure components are,

\[
\tilde{y}_{t|T} = Z_t \tilde{\alpha}_{t|T}
\]

where,

\(\tilde{\alpha}_{t|T} \) is the S estimate of \(\beta_t = \begin{bmatrix} \beta^L_t \\ \beta^H_t \end{bmatrix} \)

\[
\tilde{y}^L_{t|T} = X^L_t \tilde{\beta}^L_{t|T}
\]

where,

\(\tilde{\beta}^L_{t|T} \) is the subset of \(\tilde{\alpha}_{t|T} \) corresponding to hedonic characteristics of land

\[
\tilde{y}^H_{t|T} = X^H_t \tilde{\beta}^H_{t|T}
\]

where,

\(\tilde{\beta}^H_{t|T} \) is the subset of \(\tilde{\alpha}_{t|T} \) corresponding to hedonic characteristics of structure
3 Data

A purposely built dataset was assembled for this project. Real estate property sales data purchased from a commercial provider (RP Data Ltd) were merged with a number of other datasets. The real estate sales dataset included information of the sale date, sale price, the type of sale, land area, street address, the land parcels’ unique identifier (Lot/Plan number), geographical location, and land use, as well as specific house structure variables including the number of bedrooms, bathrooms, and car spaces.

For this study only normal property sales (all other sales, such as gifted or partial sales were excluded) with a land use description of vacant land (i.e. Vacant – large house site and Vacant – urban land) or dwelling (i.e. Dwelling – large house site or Single Unit Dwelling) were used.

Due to the incomplete nature of the commercially provided data substantially cleaning was required to remove obvious errors and build a more complete dataset. This process involved cross checking against additional data sources including local government sources (e.g. the council’s property planning and development website – PD Online), other real estate data sources (e.g. www.homepriceguide.com.au and www.realestate.com) and aerial imagery sources. Online sources such as Google Earth (using its Historical Imagery feature) and Google Street View. Once cleaned the dataset was combined with numerous other information sources, such as geospatial data, aerial imagery, and historical council records, to build a more comprehensive set of hedonic characteristics.

The age of the structure (i.e. the year it was built) is a key variable but one often not available in Australian datasets. Only around 7% of the commercially purchase dataset were supplied with a build year. To establish a proxy for build year/age of the structure online sources, largely Google Street View, were used to view each property and determine, through expert knowledge, a build era (The University of Queensland; Apperly et al. 1994; Wikipedia 2010; Wilcox 2009). The identified eras were pre-war (pre-1946), post-war (1946-1960), late twentieth century (1960-2000) and contemporary (2000 onwards). At the same time, this process was also used to collect the additional hedonic characteristics of number of levels of each structure and the building and roof
material of each structure.

Geospatial data were used in the determination of the distance of properties to key features (e.g. parks, train stations, schools, and waterways), their minimum and maximum ground levels, and the footprint of houses in one of the case study areas. All spatial calculations were done using the ESRI ArcGIS platform. Distances to features of interest were calculated using the Euclidean distance tool. This was a measurement of the straight-line distance from the centroid of each land parcel to the closest object of interest, such as a park, train station, bus stop, school, the coastline or a waterway. The calculated distance values were exported to the point layer using the Extract Values to Points tool. The minimum and maximum ground levels of each land parcel were determined from a digital elevation model (DEM) at a spatial resolution of 5 m created from LiDAR data (DERM). The Zonal Statistics tool within the Spatial Analyst toolbox was used to summarise the values of the DEM within the boundaries of each land parcel, determining the minimum and maximum ground heights of each unique land parcel. Building footprints were determined using a grid based modelling approach on LiDAR data to a 10m2 level of accuracy.

The dataset contains 3944 residential sales records\(^1\) Figure 1 shows the distribution of sales for each year in the sample, 1970 to 2010Q1.

![Figure 1 here](image)

The hedonic characteristics used in the modelling are presented in Tables 1 and 2. The dataset is from a single suburb and there is some unavoidable homogeneity, e.g. the majority of the structures are either pre-war or post-war (1946 marks a change in local architecture). This suburb, which we do not identify due to confidentiality agreements, is \(\approx\) 5 kms from Brisbane’s Central Business District and is an older, well established suburb. There is a small proportion of sales of vacant land concentrated in the later part of the sample, which appear to play a crucial role in the ability to separate the land from structure.

![Tables 1 and 2 here](image)

\(^1\)The data contain \(\sim\) 1610 properties, with an average of \(\sim\) 3 sales records each.
4 Results

The modeling is designed to provide predictions of two additive components (land and structure) and not intended to provide estimates of the marginal effects (shadow prices) of hedonic characteristics (Figure 2). Due to the small number of observations in the sample, the time period for estimation, t, in model (1) is a year. Ideally the model should be run at a monthly or quarterly level of disaggregation. In spite of the short time period available, the model performs well. The squared correlation between actual and predicted sale price, R^2, over the sample is 0.81. The decomposition of the price seems meaningful only after vacant land sales are observed (1988 onwards). Before 1988 the decomposition yields negative values for the land component, similar to findings by Diewert et al (2010). This indicates sales of vacant land might be crucial to identifying the two components. There is a very small number of sales of vacant land in the sample (87 properties); however, they greatly improve the ability of the model to decompose prices. The time-varying parameter model seems to make efficient use of the vacant land sales.

Figure 2 here

The proportion of sale price due to land value has increased from $\approx 42\%$ to $\approx 66\%$ between 2000 and 2010 (Figure 3). Existing estimates for Brisbane (ABS Housing Price Index), showed large increases in residential properties prices in Brisbane between 2000 and 2008, with the majority of that increase occurring in the period 2000 to 2005. The general view of government and the market is that this is primarily due to land price increases in response to regional population growth.

Figure 3 here

The sample used in this study is small and for properties located within a particular suburb very close to the Brisbane CBD. As such the empirical results are an illustration of the method and cannot be used to make inferences to other areas of Brisbane or other types of property products such as units, townhouses or commercial property. However, the results can be compared to the
valuations of the individual properties in the sample to those made by the Department of Environment and Resource Management (DERM)- State Valuation Service. DERM is a department of the state of Queensland with duties of land valuation under the *Land Valuation Act*.

The recently released report from the Valuer-General of the state of Queensland (State Valuation Service (2011)) indicates the method of valuation for urban land has changed from 2011 to a method known as 'site valuation.' The method used to valuate urban land during the sample period of this study is known as 'unimproved value.' The new method is the same used across other states in Australia and argued as more reflective of the market value of land. The method proposed in this paper is a market model based valuation method in that the observed sale price of a property is used to fit a willingness to pay model. The model is a hedonic based model which predicts the trend in land and structure values given the hedonic characteristics of the properties.

Land valuations for the years 2009 and 2010 are available through the DERM website. The median of the ratio of the DERM land valuation to the observed sale price of the property are compared to the median of the ratio of the model’s land valuation to the sale price of the property. These results are presented in Table 3. As stated, due to the small sample, the unit time period of estimation of the model is annual; however, the predictions for properties sold within a given month are aggregated for the presentation.

Table 3 here

The report from the Valuer-General indicates that “Brisbane was last revalued in 2010, and residential value movements have generally been mixed.” (State Valuation Service (2011), page 6). This is consistent with the estimates from the model which show the median proportion due to the land component for 2010 to be much higher than that in 2009. The proportion of the land value as a ratio of the predicted price (Figure 3) is close to 0.7, while the proportion of the predicted land value to the observed sale price is 0.78 for 2010. The equivalent predictions for 2009 are 0.72 and 0.57, respectively. The model produces significant lower land valuations for 2009. This could be a combination of the slower market in 2009 and a composition of sales effect (that is the sample of houses that were sold in 2009).
5 Conclusions

The movement of property prices is a crucial indicator of economic performance. They are used as indicators of potential price bubbles and in deliberations to set official interest rates. Local taxes in Australia are based on land valuations, and the perception that these valuations are obtained through ad-hoc procedures has driven recent controversy. The relative contribution of land and structure to aggregate price has important implications for planning, policy and the debate on housing affordability. Given this importance, the value of hedonic based price imputation is substantial as this is a model based approach and thus it can be replicated.

A practical application of this understanding of the relative contribution of land and structure to property value is in planning adaptation to future climates. The Intergovernmental Panel on Climate Change identified the Brisbane region as particularly vulnerable because its growing population is clustered in low lying coastal areas exposed to storm surge and flooding. Economically rational adaptation pathways need to be developed, and understanding how much of a property represents an appreciating asset (i.e. land) versus a depreciating asset (i.e. structure), will critically determine the logic of spending now to defend against future events. Our study shows that as land value represents an increasingly larger proportion of property values in major urban areas, cost-benefit assessments of adaptation pathways will need to think beyond benefits accrued due to avoided damage to infrastructure and also consider avoided loss of land assets as a major store of personal wealth.
References

Figure 1: Number of Sales Observed Per Year
Figure 2: Observed Sale Price and Decomposition of Predicted Price into Land and Structure Components (year median shown)
Figure 3: Proportion of Price Due to Land and Structure
Table 1: Variables and Sources of Data

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Source/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>Observed Price of Sale of the Property</td>
<td>RPdata.com (http://www.rpdata.net.au/) (RP)</td>
</tr>
<tr>
<td>LAND CHARACTERISTICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude and Longitude</td>
<td>Geographical coordinates of property address</td>
<td>RPdata.com (http://www.rpdata.net.au/) (RP)</td>
</tr>
<tr>
<td>Land Area in square metres (Land)</td>
<td>Size of the lot or parcel</td>
<td>RP and Brisbane City Council Data (BCC)</td>
</tr>
<tr>
<td>Parcel_Min/Max in metres (Height)</td>
<td>Minimum/Maximum ground level</td>
<td>DERM LiDAR</td>
</tr>
<tr>
<td>Distance in metres to (Dist_name)</td>
<td>dist_river dist_Industry dist_TrainStn dist_bikeway dist_busstop dist_parks dist_school dist_shops dist_waterway dist_CBD</td>
<td>BCC</td>
</tr>
<tr>
<td>Vacant Land</td>
<td>Sales of vacant land</td>
<td>(RP)</td>
</tr>
<tr>
<td>Flood_depth Dummy</td>
<td>=1 if (Highest Defined Flood Level - Minimum Parcel Ground Level) > 0</td>
<td>DERM LiDAR</td>
</tr>
<tr>
<td>STRUCTURE CHARACTERISTICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Era-Age of the Structure (Age)</td>
<td>Pre-War; War&Post-War; Late 20th Century; Contemporary. Building eras definitions (*)</td>
<td>RP, BCC Planning and Development Online website, Google View or www.realestate.com</td>
</tr>
<tr>
<td>Structure Area in square metres (House)</td>
<td>Footprint of the house</td>
<td>DERM LiDAR</td>
</tr>
<tr>
<td>Bedrooms (Bed)</td>
<td>Number</td>
<td>RP, BCC Planning and Development Online, or www.realestate.com</td>
</tr>
<tr>
<td>Bathrooms (Bath)</td>
<td>Number</td>
<td>RP, BCC Planning and Development Online, or www.realestate.com</td>
</tr>
<tr>
<td>Undercover Car Spaces (Car)</td>
<td>Number</td>
<td>RP, Google View or www.realestate.com</td>
</tr>
<tr>
<td>Levels in the Structure (Levels)</td>
<td>Number</td>
<td>Google View or www.realestate.com</td>
</tr>
</tbody>
</table>

(*)Google Street View or www.realestate.com

Table 2: Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$2,600</td>
<td>$4,710,000</td>
<td>$215,000</td>
</tr>
<tr>
<td>Land</td>
<td>181</td>
<td>2218</td>
<td>607</td>
</tr>
<tr>
<td>House</td>
<td>44.96</td>
<td>1000</td>
<td>174.20</td>
</tr>
<tr>
<td>Vacant Land</td>
<td>0</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Parcel_Min in metres (Height_Min)</td>
<td>0.084</td>
<td>80.625</td>
<td>20.107</td>
</tr>
<tr>
<td>Distance in metres to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist_river; dist_Industry; dist_TrainStn; dist_bikeway; dist_busstop; dist_parks; dist_school; dist_shops; dist_waterway; dist_CBD</td>
<td>0.0100; 0.0112; 0.0050; 0.0400; 0.0050; 2.4611</td>
<td>4.7740; 2.6157; 3.1689; 1.5055; 0.5040; 0.5629; 1.2339; 1.0894; 1.6236; 5.7696</td>
<td>3.0447; 0.9101; 1.4041; 0.5597; 0.1812; 0.1589; 0.4451; 0.3312; 0.5256; 3.9667</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-War</td>
<td></td>
<td></td>
<td>1942</td>
</tr>
<tr>
<td>War/Post-War</td>
<td></td>
<td></td>
<td>1462</td>
</tr>
<tr>
<td>Late 20th Century (1980s and 1990s)</td>
<td></td>
<td></td>
<td>290</td>
</tr>
<tr>
<td>Contemporary (2000s)</td>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>Bedrooms</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Bathrooms</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Undercover Car Spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Levels in the Structure</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 3: Ratio of Land Valuation to Observed Property Sale Price (median over number of properties)

<table>
<thead>
<tr>
<th>Month</th>
<th>DERM(*)</th>
<th>MODEL</th>
<th># Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-09</td>
<td>0.721</td>
<td>0.620</td>
<td>13</td>
</tr>
<tr>
<td>Feb-09</td>
<td>0.704</td>
<td>0.708</td>
<td>11</td>
</tr>
<tr>
<td>Mar-09</td>
<td>0.762</td>
<td>0.578</td>
<td>16</td>
</tr>
<tr>
<td>Apr-09</td>
<td>0.741</td>
<td>0.563</td>
<td>17</td>
</tr>
<tr>
<td>May-09</td>
<td>0.746</td>
<td>0.564</td>
<td>16</td>
</tr>
<tr>
<td>Jun-09</td>
<td>0.675</td>
<td>0.555</td>
<td>9</td>
</tr>
<tr>
<td>Jul-09</td>
<td>0.738</td>
<td>0.578</td>
<td>11</td>
</tr>
<tr>
<td>Aug-09</td>
<td>0.673</td>
<td>0.582</td>
<td>13</td>
</tr>
<tr>
<td>Sep-09</td>
<td>0.734</td>
<td>0.589</td>
<td>14</td>
</tr>
<tr>
<td>Oct-09</td>
<td>0.617</td>
<td>0.487</td>
<td>19</td>
</tr>
<tr>
<td>Nov-09</td>
<td>0.683</td>
<td>0.495</td>
<td>12</td>
</tr>
<tr>
<td>Dec-09</td>
<td>0.716</td>
<td>0.543</td>
<td>15</td>
</tr>
<tr>
<td>Jan-10</td>
<td>0.581</td>
<td>0.811</td>
<td>6</td>
</tr>
<tr>
<td>Feb-10</td>
<td>0.636</td>
<td>0.828</td>
<td>22</td>
</tr>
<tr>
<td>Mar-10</td>
<td>0.748</td>
<td>0.765</td>
<td>7</td>
</tr>
<tr>
<td>Apr-10</td>
<td>0.862</td>
<td>0.946</td>
<td>3</td>
</tr>
<tr>
<td>May-10</td>
<td>0.315</td>
<td>0.374</td>
<td>2</td>
</tr>
<tr>
<td>Sep-10</td>
<td>0.703</td>
<td>0.907</td>
<td>1</td>
</tr>
<tr>
<td>Median 2009</td>
<td>0.716</td>
<td>0.564</td>
<td>166</td>
</tr>
<tr>
<td>Median 2010</td>
<td>0.664</td>
<td>0.775</td>
<td>41</td>
</tr>
</tbody>
</table>

(*)Department of Environment and Resource Management