INSTRUCTOR ATTRACTIVENESS AND ACADEMIC RIGOUR: EXAMINATION OF STUDENT EVALUATION DATA*

Franklin G. Mixon, Jr
Center for Economic Education,
Columbus State University

Kenneth W. Smith
Department of Economics,
Millersville University

ABSTRACT

This study revisits the impact of attractiveness on performance in higher education by examining the relationship between course rigour and instructor attractiveness. More specifically, the current study addresses the following question: Do relatively more attractive professors trade on their appearance by offering more rigorous courses? Given that student evaluation results are generally used to reward good teaching, it is argued that, in offering more rigorous courses, attractive instructors are able to maintain relatively good standing amongst their departmental colleagues. This outcome is important as it relates to processes for awarding tenure and/or promotion, in addition to merit-based pay increases. The econometric tests presented here support the idea that college and university instructors do trade on their attractiveness by offering more rigorous courses.

Keywords: economics of beauty; economics instruction.

JEL classifications: A20, J24

1. INTRODUCTION

Recent studies by Hamermesh & Parker (2005) and Smith (2005) find that attractive college and university professors score higher on student evaluations of teaching than do their less attractive colleagues. Given

* The authors thank two anonymous referees and Peter Docherty for helpful comments on a previous version of this paper. The usual caveat applies. Corresponding Author: Franklin G. Mixon, Jr., Center for Economic Education, Columbus State University, 4225 University Avenue, Columbus, GA 31907, TEL +1(706)507-8052, E-mail: mixon_franklin@columbusstate.edu.

ISSN 1448-448X © 2013 Australasian Journal of Economics Education
accompanying results indicating that course rigour is negatively related to student evaluation scores (see Smith 2005), this study revisits the impact of attractiveness on performance in higher education by examining the relationship between course rigour and instructor attractiveness. Given the findings in Hamermesh & Parker (2005) and Smith (2005) – that attractive professors score higher on student evaluations of teaching than do their less attractive colleagues – more attractive college and university professors face a choice regarding how their physical attractiveness is used, as an input, in the education process. Results presented in this study from a variety of empirical specifications indicate that relatively attractive professors trade on their attractiveness by offering more rigorous courses, and, in doing so, they are able to maintain a relatively good standing amongst their departmental or unit peers in terms of economic and other rewards. The latter point here is particularly important in terms of its implications for how administrators may approach course assignments and for how relatively less attractive faculty may respond in terms of competition for rewards in academe.

2. LITERATURE REVIEW

As Hamermesh (2011) points out, a relatively new, but growing, stream of academic literature has shed substantial light on the relationship between physical attractiveness and a variety of outcomes in labour market and other settings. Studies spanning the last 20 years, such as those by Hamermesh & Biddle (1994), Pfann, Biddle, Hamermesh & Bosman (2000), Hamermesh, Meng & Zhang (2002) and Salter, Mixon & King (2012), characterize much of what this literature offers in terms of novel and compelling findings. These four representative studies indicate, ceteris paribus, that: (1) attractive individuals earn wage premiums, which can be as high as 13 percent, compared to their less attractive workforce counterparts (Hamermesh & Biddle 1994; Hamermesh et al. 2002); (2) attractive females exhibit higher labour market participation rates, while marrying men with more human capital, than their less attractive counterparts (Pfann et al. 2000); (3) advertising firms led by attractive executives exhibit higher growth rates and garner greater revenues than those led by less attractive executives; and (4) attractive real estate brokers generate higher transactions prices and greater earnings per listing (sale) than their less attractive colleagues (Salter et al. 2012). A fifth study, that by Biddle & Hamermesh (1998), suggests that prospective professional service providers understand these relationships, and self-select occupational
settings in accordance with their existing stock of beauty capital. These authors provide statistical evidence indicating that attractive law school graduates move into private sector legal work, where their good looks are advantageous in garnering clientele, while their less attractive counterparts were more likely to opt for public sector legal work, where they represent the government and its affiliated agencies.

Other studies in this genre have gone beyond the impact of investments in beauty on one’s wage or earnings, instead investigating the relationship between attractiveness and success in philanthropic, political and education markets. For example, Price (2008) finds that, depending on the race of the donor, a solicitor’s attractiveness positively influences philanthropic donations, and that blonde females raise significantly more in donations than do brunette females.\(^1\) In terms of attractiveness and political success, Hamermesh (2006) finds that – using data on the election of economists to executive offices in the American Economic Association (AEA) from 1966 through 2004 – the probability of winning an election increases as that candidate’s attractiveness rises.\(^2\) This result confirms more general evidence on professional politics presented in Klein & Rosar (2005). Lastly, a number of studies, including those by Hamermesh & Parker (2005) and Smith (2005), find that college and university instructor attractiveness is positively related to student ratings of teaching quality. Such findings are supported by Green, Mixon & Treviño (2005, 2013), who provide statistical evidence indicating that more-attractive prospective college and university professors exhibit higher probabilities of choosing liberal arts colleges/universities over research-oriented colleges/universities than their less-attractive counterparts. As in the Biddle & Hamermesh (1998) study of law school graduates discussed above, the working hypothesis in Green et al. (2005, 2013) is that teaching, where attractiveness is positively related to student ratings of teaching quality (see Hamermesh & Parker 2005; and Smith 2005), has a greater return at liberal arts colleges/universities than at research-oriented academic institutions.

\(^1\) More specifically, Price (2008) finds that the estimated return to a one standard deviation increase in attractiveness is, \textit{ceteris paribus}, more than 82 percent greater for blonde solicitors than brunette solicitors.

\(^2\) The time period examined in Hamermesh (2006) encompasses 312 candidacies for AEA executive positions, while the statistical exploration therein reveals that a candidate’s probability of winning a given AEA election increases by 12 percentage points as that candidate’s attractiveness improves from one standard deviation below the mean to one standard deviation above the mean.
As stated earlier, this study revisits the impact of attractiveness on performance in higher education by examining the relationship between course rigour and instructor attractiveness. In doing so it addresses two related questions: Do relatively more attractive professors trade on their appearance by offering more rigorous courses? Or, do these same relatively more attractive professors tend to offer less rigorous courses in order to further boost their evaluations scores? These questions are empirically examined in the section that follows.

3. DATA AND ECONOMETRIC TESTS
The data used in this study to explore the relationship between professor attractiveness and course rigour are those employed in Smith (2005) and Green et al. (2013). These data are archival, originating from the popular website RateMyProfessors.com (hereafter RMP). Individual faculty represent the unit of observation, and an individual faculty from any academic discipline is included in the sample if he/she received ten or more student ratings. For the few colleges and universities with hundreds of faculty receiving 10 or more student ratings, a random subset (of up to 200 faculty) was chosen. The final sample includes 2,986 observations. Finally, the use of the archival data from RMP, wherein students rate professors as attractive (1) or not attractive (0), offers the advantage of knowing what proportion of an individual faculty’s student raters rated him or her as physically attractive.³

Before proceeding to our statistical model, a few additional comments about the RMP data are warranted. First, the RMP website is freely accessible, and the student evaluators self-select, thus raising some unavoidable issues. Thus, as in Smith (2005) and Green et al. (2005) we proceed with some caution, noting also, however, that the results from empirical studies employing RMP data are broadly consistent with those from other studies in this literature. Moreover, RMP is perhaps the only accessible source of standardized, large-sample student evaluations data across various types of institutions from across the U.S. for use in research studies of this type. Second, the use of data from various academic disciplines, rather than economics only, is a product of sample size limitations. The current study employs almost 3,000 observations, a number that would be cut substantially by limiting the analysis to economics instructors only. These considerations warrant use, even if with some caution, of RMP data to test the hypotheses in the current study.

³ Currently, RMP offers a modified approach wherein a rating of not attractive is essentially entered as a negative value (−1), thus offsetting ratings of attractive.
Based on prior studies discussed above, we formulate the following equation, which is amenable to econometric testing:

\[
EASE_i = \alpha + \beta_1 HELP_i + \beta_2 CLEAR_i + \beta_3 PUBLIC_i + \beta_4 LIBARTS_i + \beta_5 MASTERS_i + \beta_6 LOOKS_i + \epsilon_i \quad (1)
\]

\(EASE_i\) in equation (1) is the average of professor \(i\)'s ratings on course rigour, where at the individual level student raters have rating options ranging from 1 (difficult) to 5 (easy).\(^4\) The concept of “rigour” in the context of the RMP data is a subjective one. Anecdotally, students might consider a course to be “difficult” because of mathematical or quantitative rigour. They may also attribute the “difficulty” of a course to a lengthy reading list, the presence of a writing project, or simply because they view a given professor as a “hard grader.” These types of anecdotal evidence may also vary by academic discipline. Ultimately, the concept of rigour most likely boils down to students’ perceptions of the ease with which an “A” (or maybe a “B”) is achieved from a course taught by a given professor, \(i\). As such, interpreting the regression coefficients relates to how a student rater views a difficult (an easy) grader.

The first two regressors in equation (1) capture instructor characteristics that are related to teaching quality. These are \(HELP_i\) and \(CLEAR_i\), and they represent student ratings regarding instructor \(i\)'s helpfulness and clarity in presentation, respectively. As with \(EASE\), these variables represent the average of professor \(i\)'s ratings on helpfulness and clarity, where at the individual level student raters have rating options ranging from 1 (least helpful or least clear) to 5 (most helpful or clearest). Professors who offer students greater assistance and more clearly presented lectures create an environment conducive to learning. As such, higher averages for these two measures are, ceteris paribus, expected to be positively related to \(EASE\).

The next portion of equation (1) includes a set of binary variables capturing the type of institutional affiliation for each professor in the sample. The first of these is \(PUBLIC_i\), which is a dummy variable equal to 1 for public universities, and 0 otherwise. Next, \(LIBARTS_i\) is a dummy variable that is equal to 1 for liberal arts universities, and 0 otherwise. The last of these, \(MASTERS_i\), is a dummy variable equal to 1 for master’s level colleges and universities, and 0 otherwise. Public universities are generally focused more on research and less on

\(^4\) We emphasize that because we employ averages for our dependent variable, \(EASE\), it becomes a continuous, not categorical (ordered) variable.
teaching, compared to private institutions. As such, β_3 is expected to retain a positive sign when PUBLIC is included in econometric specifications. Liberal arts and master’s level colleges and universities are, on the other hand, generally often the most focused on teaching quality and course rigour when compared to other types of higher education institutions. In this case (i.e., when LIBARTS and MASTERS are included in econometric specifications), β_4 and β_5 are expected to retain negative signs.

Lastly, we argue that college and university professors generally prefer rigour in the courses that they teach. However, given the widespread use of student evaluation results in the determination of a faculty’s economic rewards, and particularly within teaching-oriented institutions, course rigour may be weighed at the individual level against the reliance on student evaluations of teaching as a means of faculty assessment. If, in general, it is one’s classroom performance relative to that of one’s peers that is assessed in granting promotion and/or tenure, and in determining merit-based pay increases, one could argue that attractive faculty may employ their attractiveness in offsetting the negative student evaluations resulting from offering more rigorous courses. In trading on their attractiveness for greater course rigour, relatively attractive faculty can maintain relatively good standing amongst their departmental colleagues. The final regressor in equation (1), LOOKS, captures the proportion of each professor’s student raters who rate him/her as attractive. This variable tests whether professors use their attractiveness to offset the expected penalty of lower course evaluations from students for offering more rigorous courses. A positive sign on β_6 would, ceteris paribus, indicate such, while a negative sign would suggest that professors instead use their attractiveness to augment student evaluations scores by offering less rigorous courses.

Summary statistics from the data, along with variable definitions, are presented in Table 1. As indicated in Table 1, the means for EASE, HELP and CLEAR are 3.025, 3.529 and 3.445, respectively. Thus, the mean “easiness” score is about 61 percent of its maximum possible value of five. Table 1 also indicates that about 69 percent of the professors included in the sample are affiliated with public colleges and universities, while about 9 percent and 51 percent of them are, respectively, affiliated with liberal arts and master’s level colleges and universities. In terms of instructor attractiveness, the mean value for LOOKS is 5.9 percent, indicating that about 6 percent of an
Table 1 – Variable Descriptions and Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Summary Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASE</td>
<td>Average rating for each faculty based on course rigour (1 to 5 scale, where 1=difficult and 5=easy).</td>
<td>3.025 (0.821)</td>
</tr>
<tr>
<td>HELP</td>
<td>Average rating for each faculty based on willingness to offer out-of-class assistance to students (1 to 5 scale, where 1=not helpful and 5=helpful).</td>
<td>3.529 (0.956)</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Average rating for each faculty based on clarity of lecture or instruction (1 to 5 scale, where 1=not clear and 5=clear).</td>
<td>3.445 (0.981)</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>Dummy variable equal to 1 for public colleges and universities, and 0 otherwise.</td>
<td>0.694 (0.461)</td>
</tr>
<tr>
<td>LIBARTS</td>
<td>Dummy variable equal to 1 for liberal arts colleges and universities, and 0 otherwise.</td>
<td>0.086 (0.280)</td>
</tr>
<tr>
<td>MASTERS</td>
<td>Dummy variable equal to 1 for master’s level colleges and universities, and 0 otherwise.</td>
<td>0.506 (0.500)</td>
</tr>
<tr>
<td>LOOKS</td>
<td>The proportion of student raters indicating that a particular faculty is physically attractive/good-looking.</td>
<td>0.059 (0.156)</td>
</tr>
<tr>
<td>LOOKING</td>
<td>Dummy variable equal to 1 for faculty rated as physically attractive/good-looking by more than 14.5 percent of student raters, and 0 otherwise.</td>
<td>0.132 (0.339)</td>
</tr>
</tbody>
</table>

Note: The summary statistics above are means (standard deviations).

Lastly, in terms of Pearson correlations, that between **PUBLIC** and **LIBARTS** is, at −0.311, smaller (in absolute value) than expected. However, the correlation between **HELP** and **CLEAR** is, at +0.929, quite large. As such, particular attention is paid to the statistical significance, or lack thereof, of these two regressors in the OLS regressions that are discussed below. None of the other correlations is larger (in absolute value) than +0.325.

Table 2 presents results from White heteroscedasticity-corrected least squares estimations (White 1980) of several variations of equation (1). The first specification is jointly significant at the 0.01 level, produces an adj R^2 of 0.340, and all of the regressors retain their expected signs. The correlation between the residuals from the model and the predicted value of **EASE** is only 0.0008, while those between the residuals and the other regressors range from −0.0003 to 0.0008, all
of which is encouraging.⁵ Although both HELP and CLEAR are positively related to EASE as expected, only HELP is significant at the 0.075 level or better.⁶ Next, the sole institutional control variable included in this particular specification, MASTERS, is, as expected, both negatively related to EASE and statistically significant at the 0.10 level. This suggests that courses at master’s level colleges and universities are considered more rigorous than those at other types of colleges and universities. Lastly, the variable of interest, LOOKS, is negatively signed and statistically significant. This result suggests that college and university instructors trade on their attractiveness by offering more rigorous courses. In doing so, relatively attractive professors are, as discussed above, able to maintain a relatively good standing against their home-institution peers while at the same time offering more rigorous courses.

The second specification in Table 2 adds PUBLIC to the first specification. This specification is also jointly significant at the 0.01 level, while it produces an adj R^2 of 0.343. HELP and CLEAR are again both positively related to EASE, although HELP is the only one that is statistically significant at the 0.075 level or better. The institutional setting control in this specification, PUBLIC, is positively signed, as expected, and statistically significant at the 0.01 level. This result suggests that courses at public colleges and universities are considered slightly less rigorous than those at their private college and university counterparts. When LIBARTS replaces PUBLIC, as in the third specification in Table 2, the results for HELP and CLEAR are similar to those in the first specification, while LIBARTS is negative and statistically significant at the 0.01 level. The latter result suggests that courses at liberal arts institutions are considered more rigorous than their counterparts at other types of higher education institutions.

In both the second and third models presented in Table 2, MASTERS retains a negative sign and is statistically significant. This result supports that from model (1) of Table 2 – that courses at master’s level colleges and universities are considered more rigorous than those offered in competing institutional settings. Lastly, the key variable, LOOKS, is again negatively related to EASE and statistically significant at better than the 0.075 level in each of the second and third models.

⁵ These results are mirrored in the other specifications of equation (1) that are tested in this study.
⁶ The insignificance of CLEAR is a consequence of the high degree of collinearity between these two control variables.
<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.254*</td>
<td>1.198*</td>
<td>1.293*</td>
<td>1.262*</td>
<td>1.252*</td>
<td>1.195*</td>
<td>1.292*</td>
<td>1.260*</td>
</tr>
<tr>
<td></td>
<td>(25.83)</td>
<td>(22.83)</td>
<td>(26.57)</td>
<td>(23.75)</td>
<td>(25.77)</td>
<td>(22.76)</td>
<td>(26.52)</td>
<td>(23.68)</td>
</tr>
<tr>
<td>HELP</td>
<td>0.462*</td>
<td>0.456*</td>
<td>0.469*</td>
<td>0.465*</td>
<td>0.461*</td>
<td>0.454*</td>
<td>0.467*</td>
<td>0.463*</td>
</tr>
<tr>
<td>CLEAR</td>
<td>0.049</td>
<td>0.054</td>
<td>0.048</td>
<td>0.050</td>
<td>0.052</td>
<td>0.057</td>
<td>0.050</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>(1.39)</td>
<td>(1.54)</td>
<td>(1.35)</td>
<td>(1.43)</td>
<td>(1.46)</td>
<td>(1.60)</td>
<td>(1.42)</td>
<td>(1.49)</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.100*</td>
<td>–</td>
<td>0.051</td>
<td>–</td>
<td>0.100*</td>
<td>–</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.44)</td>
<td>(1.71)</td>
<td>(3.44)</td>
<td>(4.44)</td>
<td>(3.44)</td>
<td>(1.73)</td>
<td></td>
</tr>
<tr>
<td>LIBARTS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>MASTERS</td>
<td>–0.040†</td>
<td>–0.056†</td>
<td>–0.097†</td>
<td>–0.101†</td>
<td>–0.040</td>
<td>–0.056†</td>
<td>–0.097†</td>
<td>–0.101†</td>
</tr>
<tr>
<td></td>
<td>(1.65)</td>
<td>(2.25)</td>
<td>(3.84)</td>
<td>(3.96)</td>
<td>(1.63)</td>
<td>(2.24)</td>
<td>(3.83)</td>
<td>(3.95)</td>
</tr>
<tr>
<td>LOOKS</td>
<td>–0.174†</td>
<td>–0.148‡</td>
<td>–0.159†</td>
<td>–0.147‡</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.14)</td>
<td>(1.82)</td>
<td>(2.00)</td>
<td>(1.84)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOOKING</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>2.986</td>
<td>2.986</td>
<td>2.986</td>
<td>2.986</td>
<td>2.986</td>
<td>2.986</td>
<td>2.986</td>
<td>2.986</td>
</tr>
<tr>
<td>F-statistic</td>
<td>385.8*</td>
<td>312.7*</td>
<td>324.2*</td>
<td>270.9*</td>
<td>386.1*</td>
<td>312.9*</td>
<td>324.4*</td>
<td>271.1*</td>
</tr>
<tr>
<td>\bar{R}^2</td>
<td>0.340</td>
<td>0.343</td>
<td>0.351</td>
<td>0.352</td>
<td>0.340</td>
<td>0.343</td>
<td>0.351</td>
<td>0.352</td>
</tr>
</tbody>
</table>

Note: The numbers in parentheses below the parameter estimates are t-statistics based on White heteroscedasticity-corrected standard errors (White 1980) where symbols *, † and ‡ denote the 0.01, 0.05, and 0.075 levels of significance respectively.

specifications. This finding suggests, as before, that college and university instructors trade on their attractiveness by offering more rigorous courses. Lastly, as a comprehensive test of equation (1) above, all six regressors are included in model (4) of Table 2. There, all of the variables retain their expected signs, and, with the exception of CLEAR, each is significant at the 0.075 level. The parameter estimates are generally remarkably stable from the first three (restricted) models to the unrestricted specification, including LOOKS, the variable of interest.

The final four specifications in Table 2 provide an alternative approach. Using the benchmark minimum of 10 RMP ratings for inclusion in the sample, a 0.145 or greater proportion of students rating their professor as attractive (sexy) achieves statistical significance. This information is used to generate LOOKING, a dummy variable.
equal to 1 if 0.145 or more of instructor i’s student raters list him or her as attractive (sexy), and 0 otherwise. As indicated in Table 1, about 13 percent of the professors in the sample are considered “attractive” by their student raters. In the final three specifications in Table 2, \textit{LOOKING} replaces \textit{LOOKS}.

Again, \textit{HELP} is positively related to \textit{EASE}, and significant at the 0.01 level in each of the final four specifications in Table 2. There is also a great deal of parameter stability regarding \textit{HELP} across the final four models in Table 2. In model (6), which is jointly significant at the 0.01 level and produces an $adj \ R^2$ of 0.343, \textit{PUBLIC} is positively signed and significant at the 0.01 level as before, suggesting that course rigour at public universities lags slightly behind that of their private counterparts. Here, again, \textit{MASTERS} is negatively signed and significant, indicating that course rigour at master’s level universities exceeds that of competing types of institutions. The variable of interest in these specifications, \textit{LOOKING}, is negative and significant at the 0.05 level, suggesting again that college and university instructors trade on their attractiveness by offering more rigorous courses. In fact, the estimate for \textit{LOOKING} is almost as large, in absolute value, as that for \textit{PUBLIC}, suggesting that attractive instructors at public universities offer course experiences that are, \textit{ceteris paribus}, similar in terms of rigour to those offered by their less-attractive counterparts in private university settings. Lastly, when \textit{LIBARTS} included, as in the final two models presented in Table 2, \textit{LOOKING} remains negative and significant at the 0.05 level, while \textit{LIBARTS} is negatively related to \textit{EASE} and significant at the 0.01 level.7 As before, this result suggests that college and university instructors trade on their attractiveness by offering more rigorous courses, and, in doing so, they are able to maintain a relatively good standing amongst their departmental or unit peers in terms of economic and other rewards.

In order to check the robustness of the results presented above, student quality is controlled by using the institutional selectivity data provided by \textit{U.S. News & World Report}.8 This publication produces a selectively scale (1 to 5), wherein 1 represents the least selective U.S. colleges and universities, and 5 represents the most selective U.S. colleges and universities. The addition of this particular control

7 These results, along with those for \textit{HELP}, \textit{PUBLIC} and \textit{MASTERS}, support those from the prior estimation of the various specifications of equation (1).

8 As an anonymous referee correctly indicates, student quality is an important consideration given that students are judging course rigour and quality through the RMP website.
variable does not have a meaningful effect on the results, including those for our attractiveness variable. Next, we reassessed course rigour by treating EASE as a categorical variable, using a scale from highest rigour to least rigour. The marginal effects from an ordered logit model (with error corrections) indicate that attractive instructors are significantly more likely than others to be rated among the two highest rigour categories, ceteris paribus. Lastly, it was possible to break the academic disciplines down into broadly-defined categories. In doing so, we find that the attractiveness-course rigour relationship found above remains for both the humanities and the social sciences, with the latter including economics. The results parse, to some degree, differences between economics and other disciplines.9

Finally, it is possible to interpret our results as having implications regarding the recruitment (of faculty) practices at public and private, liberal arts and research universities in the U.S., or as having implications regarding the assignment of university faculty to courses taught with more rigour. Perhaps the assignment of more attractive instructors to gateway courses, particularly those taught in large sections, would serve as a useful tool for administrators in this regard. However, such an approach would almost certainly encounter both ethical and legal problems. We contend instead that the results presented in this study may have more to say about the validity of using student evaluations of teaching as a guideline for decisions about tenure and promotion of college and university faculty. When compared to business and other social science disciplines, economics is generally thought to be more rigorous in the mathematical or quantitative sense. This perception is particularly important when economics courses generally serve as service courses for business majors, as they do at many colleges and universities in the U.S. In these situations, the perception of economics as a rigorous subject is even more pronounced. As such, findings such as those presented in this study may generate additional pressure for rank-and-file faculty to provide “easier” courses in order to compete for monetary and other rewards that are commonly employed in academe.

4. CONCLUDING COMMENTS
This study revisits the impact of attractiveness on performance in higher education settings by examining the relationship between course rigour and instructor attractiveness. It is argued here that instructors generally

9 Results from all of these additional econometric tests are available from the authors upon request.
prefer more rigour in the courses that they teach, but that instructors, particularly those affiliated with institutions where teaching counts more in the determination of faculty rewards, must weigh course rigour against the reliance on student evaluations of teaching as a means of faculty assessment. However, if, in general, it is one’s classroom performance relative to that of one’s peers that is assessed in determining faculty rewards, attractive faculty may employ their attractiveness in offsetting the negative evaluation resulting from offering more rigorous courses while at the same time maintaining relatively good standing amongst their departmental peers.

Results from a number of econometric tests using a large sample of teaching evaluations data support the notion that relatively more attractive professors do trade on their attractiveness in offering a greater level of course rigour. In fact, some estimates indicate that instructor attractiveness nearly offsets, or even more than offsets, the private-public institutional difference (favouring private institutions) in course rigour. The results presented here support and extend those in studies of the relationship between course rigour and student evaluations, and of the role instructor attractiveness plays in the sorting of college and university professors across private and public institutional settings.

REFERENCES

