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Abstract: Physical modeling represents probably the oldest design tool in hydraulic engineering together with analytical approaches. 
In free surface flows, the similitude based upon a Froude similarity allows for a correct representation of the dominant forces, namely 
gravity and inertia. As a result fluid flow properties such as the capillary forces and the viscous forces might be incorrectly 
reproduced, affecting the air entrainment and transport capacity of a high-speed model flow. Small physical models operating under a 
Froude similitude systematically underestimate the air entrainment rate and air-water interfacial properties. To limit scale effects, 
minimal values of Reynolds or Weber number have to be respected. The present article summarizes the physical background of such 
limitations and their combination in terms of the Morton number. Based upon a literature review, the existing limits are presented 
and discussed, resulting in a series of more conservative recommendations in terms of air concentration scaling. For other air-water 
flow parameters, the selection of the criteria to assess scale effects is critical because some parameters (e.g., bubble sizes, turbulent 
scales) can be affected by scale effects, even in relatively large laboratory models. 
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Introduction 
In 1941, the tunnel spillway on the Arizona side 

of the Boulder Dam (USA) operated during four mon- 
ths with a relatively small discharge, when a routine 
inspection indicated that a 35 m long tunnel section 
was completely destroyed as a consequence of cavita- 
tion damage. The repairs included a re-lining combi- 
ned with the installation of – then not yet common–ae- 
ration devices, and the US Bureau of Reclamation un- 
dertook a number of “air injection” device model stu- 
dies in a 60:1 scale model[1]. This study certainly re- 
presented a pioneer work in chute aeration studies, al- 
though the results seemed rather disappointing at the 
time. Bradley[1] concluded: “The results of this inve- 
stigation were negative in character. The plan for aera- 
tion of the Boulder Dam spillway by devices constru- 
cted on the tunnel invert…does not appear encoura- 
ging”. The statement reflected that only very small, 
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insufficient air contents were measured in the physical 
model, designed based upon a Froude similitude. 
Bradley[1] acknowledged, “The viscosity of the water 
and air are same in both model and prototype, and that 
entrainment of air from the surface will be much more 
pronounced in the prototype”. 

Air-water two-phase flows have been observed in 
several hydraulic structures, such as hydraulic jumps, 
intakes, drop-shafts, spillways, jets and plunge pools 
(Fig.1(a)). The flow phenomena in these structures are 
challenging, and yet relevant to hydraulic design. Phy- 
sical model testing is often applied to investigate the 
related flow characteristics. In order to keep the physi- 
cal models within economic dimensions and to mini- 
mize the discharges to supply, the Froude similitude 
and scale factors larger than 30:1 are often applied. 
These small models characteristically underestimate 
the air entrainment and transport in the fluid, because 
the effects of surface tension and viscosity are relati- 
vely over-represented in the model, given that water is 
used as fluid in both model and prototype. This is illu- 
strated in Fig.1, showing a prototype operation 
(Fig.1(a)), two scale models at 10:1 and 25:1 geome- 
tric scales (Figs.1(b), 1(c)). 
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Fig.1 Comparison of air-water flows between prototype and laboratory model operations of stepped spillways, (a) Paradise dam ste- 

pped spillway (Australia) on 5 March 2013 (Photograph H. Chanson), 32 500 m /sQ  , / = 2.9ch h , 6= 7 10Re  , =h  

0.62 m, o= 57 , (b) Laboratory experiments (Courtesy of Mr P. Royet, IFSTTAR) 
3= 0.40 m /sQ , / = 3.2ch h , = 2.6Re   

105, = 0.06 mh , o= 53 , and (c) Laboratory experiments (Courtesy of Mr P. Royet, IFSTTAR) 104Re < 4 , =h 0.024 m, 
o= 63.4 , o59  and o53  (from left to right) 

 
The literature describes mainly two approaches 

to combine the Froude similitude with a reasonable 
approximation of the rate of air entrainment, namely 
(a) limit the model scale to maximally 10:1[2,3], or (b) 
respect minimum values of the Weber or Reynolds 
numbers[4]. Both approaches allow more realistic pre- 
dictions of air entrainment and transport based upon 
the scaled model results. These limits are derived from 
model families or comparisons with prototype measu- 
rements, if available[5]. 

Early studies of the bubble rise velocity in sta- 
gnant fluids highlighted the relevant dimensionless 
numbers, namely the Reynolds and Weber numbers. 
The results suggested some limiting value of them, 
above which the effect of fluid constants on the bu- 
bble motion is small. In these contributions, the intro- 
duction of the Morton number[6], as a link between the 
aforementioned numbers, allows for an expression of 
these limiting values as function of the Froude number. 
This concept is applied to free-surface flows in hy- 
draulic structures on the basis of recent scaling limita- 
tions, and the notion of scale effects is discussed in a 
broader context. 
 
 
1. Bubble rise velocity in stagnant fluid 

The motion of a rising bubble in a stagnant fluid 
is dominated by the physical constants of the fluid and 
of the gas, namely   is the dynamic viscosity,   is 

the density and   is the surface tension. The first two 

variables must be theoretically considered for both gas 
and fluid phases. For pressures which are far from the 
critical point, the forces within a gas bubble might be 
neglected as they are small compared to those within 
the liquid. Note that the critical point describes the 
condition at which the phase boundary between fluid 
and gas terminates. For water, the latter is at around 
374oC and 22 MPa. These conditions are unlikely in 
hydraulic engineering, and the gas (herein air) prope- 
rties are of minor significance. 

The motion of gas bubbles in a fluid is governed 
by buoyancy, resulting from the density difference 
between gas and fluid. If the gas density is negligible 
in comparison to that of the fluid, as for air and water, 
the buoyancy is a function of the pressure gradient 

/P z  , hence the gravitational acceleration g , where 

z  is the vertical elevation. Buoyancy depends further 
upon the bubble volume which is typically linked to 
an equivalent sphere diameter D . When a bubble 
moves relative to the surrounding fluid, the latter ge- 
nerates a resistance linked to the bubble (subscript b ) 
rise velocity bV . 

Schmidt[7] conducted a dimensional analysis of 
the bubble motion in fluids. He concluded that the re- 
lated processes can be described based on the follo- 
wing dimensionless numbers: 

The bubble Reynolds number 
 

= b
b

V D
Re


                                (1) 
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Fig.2 Drag coefficient as a function of the bubble Weber number bWe  for a single bubble rising at terminal velocity in various sta- 

gnant fluids (Habermann and Morton 1954) 
 

The bubble Froude number 
 

= b
b

V
Fr

g D
                               (2) 

 
The bubble Weber number 

 
2

= b
b

V D
We




                              (3) 

 
where = /    is the kinematic viscosity. The bubble 

rise velocity bV  was included in all dimensionless nu- 

mbers, and it could not be derived simply from dimen- 
sionless charts based upon bRe , bFr  and bWe . A re- 

arrangement was thus proposed to give only one ex- 
plicit term containing bV , namely that of the bubble 

Reynolds number bRe . Schmidt suggested 
 

= b
b

V D
Re


                                (4) 
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
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
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Equation (4) describes a priori the bubble characteri- 
stics including its diameter D  and rise velocity bV . 

Equation (5) includes the bubble diameter, fluid con- 
stants and gravity acceleration, while Eq.(6) contains 
exclusively the fluid constants and gravity accelera- 
tion. Consequently the bubble rise velocity in a sta- 
gnant, infinite fluid volume was expressed by 

Schmidt[7] as 
 

2

43
= ,bV D D g

f
g

 
   

 
 
 
 

                  (7) 

 
He concluded that physical experiments had to be 
conducted to support the above hypotheses, in particu- 
lar with different fluids. 

Habermann and Morton[8] performed some expe- 
riments related to the drag coefficient of freely rising 
air bubbles in stagnant fluids under various fluid pro- 
perties: water at 6oC, 19oC, 21oC and 49oC, glim solu- 
tion, mineral oil, varsol, turpentine, methyl alcohol, 
olive oil, syrup, different corn syrup-water mixtures, 
glycerin-water mixtures, and an ethyl alcohol-water 
mixture. Equation (6) was adapted by introducing the 
dimensionless parameter 4 3= /( )Mo g  , now ca- 

lled the Morton number[6] 
 

3

2 4
=

We
Mo

Fr Re
                             (8) 

 

The tests of Habermann and Morton[8] covered 0.2  
2 1110 0.3 10Mo    . 

With increasing bubble size, a change in rising 
bubble shape was observed, from spherical to ellipsoi- 
dal, and finally to spherical cap, for all liquids[8,9]. The 
bubble volumes at which the transition occurred were 
functions of the fluid properties, thus of the dimen- 
sionless number Mo . The reasoning may be applied 
to similar bubbles in different fluids, as well as for a 
single fluid including bubbles under different scale fa- 
ctors. The latter is a common situation in physical mo- 
deling of high-velocity free-surface flows in hydraulic 
structures. There, the two-phase gas-liquid flows are 
characterized by constant properties since air and 
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water are used in both prototype and model, whereas 
other characteristic values linked to geometry and 
force ratios may vary. Note however that Habermann 
and Morton[8] concluded that the air bubble motion at 
the terminal velocity cannot be described solely by the 
dimensionless numbers presented in Eqs.(4) to (6), be- 
cause the drag coefficient was also a function of the 
gas phase motion within the bubbles. 

An example for the effect of the Morton number 
Mo  on the rise bubble drag coefficient is shown in 
Fig.2. Although no clear trend is recognizable, “large” 
values of 2(10 )Mo   tended to relatively large drag 

coefficients, whereas “small” values of 11(10 )Mo 
 in- 

dicate smaller drag coefficients. Interestingly, for 

bWe  40, all drag coefficient curves tended to colla- 

pse, independent of Mo . A similar trend could be 
seen in terms of the bubble Reynolds number bRe , 

where the data collapsed for bRe  3×103. The latter 

would imply that the terminal bubble rise velocity of 
air bubbles is similar when the equivalent bubble dia- 
meter is larger than some 0.01 m to 0.02 m. In practi- 
ce, the air bubble rise velocity in water tends to be 
constant for bubble diameters between 0.001 m and 
0.02 m, with increasing rise velocity with augmenting 
bubble size for D  0.02 m[9]. 
 
 
2. Conceptual analogy to air-water mixture-flow 

In physical modeling of hydraulic structures, the 
behavior of a single air bubble in stagnant water is ra- 
rely of interest. Typically, the studies focus on the 
characteristics of air-water mixture flows as a conti- 
nuum medium, for example, in stepped spillways, hy- 
draulic jumps, free water jets, steep chutes, and drop- 
shafts. The knowledge of the air bubble entrainment 
and transport is essential to describe the flow prope- 
rties, including the adequate free-board height, jet di- 
sintegration, friction losses, and air-water mass tran- 
sfer rate[2,10,11]. 

Most physical models are kept within economical 
dimensions, implying a Froude similitude with a geo- 
metric scale ratio of typically 30:1 to 60:1[12,13]. The 
dynamic similitude used to derive model-scaling laws 
considers the ratios of forces acting on the fluid(s)[6]. 
The ratio of inertia to gravity forces results in the 
Froude number; the ratio of inertia to viscous forces 
gives the Reynolds number, the ratio of inertia to sur- 
face tension forces yields the Weber number. A true 
dynamic similarity of aerated flows require achieving 
identical Froude number, Reynolds number and 
Weber number in both prototype and model. This is 
physically impossible when the same fluids (air, water) 
are used in both prototype and model[6]. As a conse- 
quence, small scale models based upon the Froude 
similitude may underestimate the air transport in the 

fluid, because the relative effects of surface tension 
and viscosity are over-represented[11,14]. Since a true 
dynamic similitude exists only at full-scale, the under- 
estimation of scale model air entrainment and transpo- 
rt must be minimized in modeling practice by limita- 
tions in terms of We  or Re . These limits are derived 
from systematic model families and comparisons with 
prototype data. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Bottom air concentration bC  curves versus normalization 

functions f , downstream of (a) deflector, (b) drop aera- 

tors, with trend line for unaffected tests (–) and symbols 
for tests affected by scale effects, (–) Pfister and Hager 
(2010b) with data 0.5We  140 

 
Such limits represent a link between the above 

description related to the bubble rise velocity (Section 
1) and observations from model families (Section 3). 
By following the results for single bubbles in a stagna- 
nt fluid[7,8], a similar concept is proposed herein to 
adequately model an air-water mixture-flow conti- 
nuum under a reduced geometric scale factor. The re- 
levant dimensional numbers are: 

The Reynolds number 
 

=
Vh

Re


                                 (9) 

 

The Froude number 
 

=
V

Fr
gh

                               (10) 
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Table 1 Limiting scale factors to prevent significant scale effects in two-phase air-water flows under Froude similitude, with a 
focus on air concentrations (also denoted as void fraction) for undistorted air-water scale models 

Reference Year Criterion Air-water flow parameter(s) Application range 

[28] 1984 Re  1.0×105 Air transport rate Chute air entrainment 

[29] 1987 Re  1.0×105 Air demand flow rate Aerator, particularly   

[30] 1988 0.5 110We   Air demand flow rate Aerator, particularly   

[31] 1994 0.5 170We   Air demand flow rate Aerator, particularly   

[3] 2000 Re  1.0×105 Void fraction and interfacial velocity 
Two-phase stepped spillway flow

( o30  and o50  chutes) 

[32] 2004 Re > 1.4×105 (*) 
Void fraction, bubble count rate, bubble 

chord time, particle residence time 
Drop-shaft 

[33] 2004 0.5 32We   Void fraction, bubble count rate Circular plunging jets 

[34] 2005 Re  3×105 (*) 
Void fraction, interfacial velocity, bubble count

rate, turbulence intensity, bubble chord size 
Two-phase stepped spillway flow

( o3.4  and o16  chutes) 

[35] 2008 Re > 1.0×105 (*) 
Void fraction, interfacial velocity, bubble count

rate, turbulence intensity, bubble chord time 
Hydraulic jump 

[22] 2009 Re > 2.5×105 (*) 
Void fraction, interfacial velocity, bubble count

rate, turbulence intensity, integral turbulent 
time scale, bubble chord size 

Two-phase stepped spillway flow

( o22  chute) 

[15, 16] 2010 
Re  2.2×105, 

0.5 140We   
Void fraction Chute aerator, bC  development

[17] 2013 Re > 1.3×105 (*) 
Void fraction, interfacial velocity, bubble count

rate, turbulence intensity, integral turbulent 
time scale, bubble chord size 

Hydraulic jump 

[36] 2013 Re > 2.5×105 (*) 
Void fraction, interfacial velocity, bubble count
rate, turbulence intensity, integral turbulent time

scale, bubble chord size, bubble clustering 

Two-phase stepped spillway flow

( o9  and o26  chutes) 

(*): Incomplete criterion since an asymptotic result was not achieved. 
 

The Weber number 
 

2

=
V h

We



                              (11) 

 

where V  is a characteristic air-water flow velocity, 
and h  is a characteristic air-water flow depth. For air- 
water two-phase flows, the Morton number equals 

=Mo 3.89×10–11 using the fluid properties at 15oC. 
 
 
3. Limiting factors 

A number of model families and comprehensive 
data sets were published to test scale effects in the 
modeling of air-water two-phase flows. These studies 
were based upon the Froude and Morton similitudes 
with undistorted models in geometrically similar mo- 
dels under controlled flow conditions to assess the as- 
sociated-scale effects. Table 1 summarizes a number 
of relevant studies, leading to some suggested limiting 
criteria of about 0.5We  110 to 170 and Re  1×105 to 
3×105 when the relevant scaling parameter is the air 

concentration. For example, Pfister and Hager[15,16] 
identified a gross underestimate in terms of local bo- 
ttom air concentration by up to one magnitude as 

0.5We  140. This is illustrated in Fig.3, where the ab- 
scissa corresponds to the streamwise normalizations 

Df  and Sf  given by these authors, and the trend lines 

correspond to the best fit of all data from tests with 
0.5We  140. 

Despite the relatively limited scope of experime- 
ntal investigations listed in Table 1, their results de- 
monstrated unequivocally the limitations for the phy- 
sical modeling of two-phase air-water flows. The fi- 
ndings of these systematic experimental studies high- 
lighted that (1) the notion of scale effects must be de- 
fined in terms of some specific set of two-phase air- 
water characteristics, and (2) some aerated flow pro- 
perties are more affected by scale effects than others, 
even in large-size facilities[5,14]. The selection of the 
criteria to assess scale effects is critical: e.g., void fra- 
ction, turbulence intensity, or bubble size. Any men- 
tion of scale effects must be associated with a list of 
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tested parameters[14,17], and this is well-known in mo- 
no-phase flows[18]. The experimental data showed that 
some parameters, such as bubble sizes and turbulent 
scales, are likely to be most affected by scale effe- 
cts[5,14,19]. It is noteworthy that no distorted physical 
modeling of air-water flows was considered yet, thou- 
gh the scale distortion may enable to achieve some si- 
milarity in terms of bubble rise velocity on chute spill- 
ways and inclined plunging jets. 

Self-similarity is another powerful tool in turbu- 
lent air-water flow investigations involving a wide 
spectrum of spatial and temporal scales. Self-similari- 
ty is closely linked to dynamic and kinematic similari- 
ties, and the existence of self-similar relationships 
may have major implications on the measurement 
strategy in experimental and physical modeling stu- 
dies[20,21]. Although it is impossible to achieve a true 
dynamic similarity in air-water flows because of too 
many relevant dimensionless parameters, a number of 
laboratory data showed several self-similar relation- 
ships that remain invariant under changes of scale. 
The results may provide a picture general enough to 
be used, as a first approximation, to characterize the 
air-water flow properties in similar hydraulic structu- 
res irrespective of the physical scale[22]. 

In addition to dynamic similarity and self-simila- 
rity, a further modeling approach may be based upon 
some theoretical developments leading to theoretica- 
lly-based equations. An illustration is the analytical 
solution of the advection diffusion equation for air bu- 
bbles[2,11,23,24]. The existence of theoretical relationshi- 
ps may have some implications regarding the labora- 
tory study approach and measurement methods. The 
existence of an analytical solution may allow a drastic 
reduction of the amount of measurements. 
 
 
4. Discussion 

Previous studies used mostly two criteria to asse- 
ss scale effects, i.e., the limiting values in terms of 

0.5We  and Re  (Table 1). When the same fluids (air 
and water) are used in prototype and model, the two 
numbers depend on each other, besides Fr  and the 
Morton number Mo  (Eq.(8)). The use of the Froude 
similitude with air and water as fluids in both model 
and the prototype leads to a similitude in terms of the 
Morton number: Mo  is the constant and Fr  is the 
constant. For a given Froude number Fr , the product 

2 3 4= /MoFr We Re  has to be identical in the model 
and prototype flows. A transformation of Eq.(8) gives 
the direct relationship between the Reynolds number 
and Weber number 
 

1/ 43

2
=

We
Re

Fr Mo

 
 
 

                         (12) 

Inserting for instance the limitation 0.5 =We 140 into 
Eq.(12), Fig.4 presents the results in the related -Fr  
Re  curves. For typical high-speed air-water chute 
flows with 5 15Fr  , scale effects related to air con- 
centrations are small if Re  1.5×105 to 3.0×105 or 

0.5We  140. The limits are not sensitive to Fr  in the 
afore-mentioned range, whereas more restrictive limi- 
tations in terms of Re  have to be applied for smaller 
values of Fr  and to other air-water flow characteri- 
stics. Only one limitation in terms of Re  or 

0.5We  has 
to be considered when applying Eq.(12), since the 
other is implicitly respected. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Relationship between Re  and Fr  for 0.5 =We 140 

(Eq.(12)) 
 

Table 1 suggests that the proposed limiting rela- 
tionships in terms of scale effects for air-water flows 
have become more restrictive over time. The trend 
might be linked to the development in measurement 
techniques, allowing for more precise and punctual 
(instead of cross-sectional) two-phase air-water flow 
measurements. Ultimately, no scale effect is observed 
at full scale only, using air and water in prototype and 
model: i.e., in prototype flow conditions. But prototy- 
pe observations are rare. The Aviemore Dam spillway 
investigations in New Zealand remain a key refere- 
nce[25,26]. A few prototype observations were condu- 
cted, mostly qualitative like at the Dachaoshan Dam 
spillway[27]. But even the Aviemore Dam spillway 
data sets might be challenging. The flow conditions 
corresponded to Re  2×106, which is one to two 
orders of magnitude lower than the design flow condi- 
tions of very large spillway systems. A number of re- 
cent air-water studies on dynamic similarity would su- 
ggest that the extrapolation of Aviemore Dam results 
could be subjected to some scale effects at larger 
Reynolds number. Figures 1 and 5 provide some com- 
parative illustrations of prototype and laboratory air- 
water two-phase flows. Figure 1 presents some air- 
water skimming flow above a stepped spillway. The 
close-up photographs suggest that the turbulence next 
to the inception point of free-surface aeration differs 
significantly between prototype and models for a com- 
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parable Froude number. Figure 5 shows a hydraulic 
jump stilling basin in operation. In the prototype 
(Fig.5(a)), the hydraulic power dissipated in the hy- 
draulic jump as 6 MW per unit width, compared to 
230 W/m in the laboratory model (Fig.5(b)) for an 
identical Froude number. Again the surface turbulence 
appears substantially different despite an identical 
Froude number. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Comparison of air-water flow features between prototype 

and laboratory model operations of hydraulic jumps, (a) 
Hydraulic jump stilling basin downstream of Paradise 
Dam spillway (Australia) on 30 December 2010 (Courte- 
sy of B. Chanson): Q  6 300 m3/s, =Fr 8, =Re 2×107, 

and (b) Laboratory experiment: =Q 0.030 m3/s, =Fr 8, 

=Re 6×104  
 
 
5. Conclusions 

The physical modeling of air-water two-phase 
flows in hydraulic engineering would require the 
Froude number ( )Fr , Weber number ( )We  and 

Reynolds number ( )Re  to be identical in prototype 

and laboratory. This is physically impossible unless 
working at full-scale. A re-arrangement of the dimen- 
sionless numbers results in the introduction of the 
Morton number ( )Mo . The survey of a number of de- 

tailed investigations served as the basis to the descri- 
bed scale effects in modeling high-speed two-phase 
flows. The results have highlighted the significance of 
the non-dimensional numbers Fr , We  and Re , their 
combination yielding Mo , and some limiting values 
of Re  or We  to reduce scale effects. Combining 
these considerations together with published limits to 
minimize scale effects in terms of air concentration, 
the outcome indicates that values of Re > 2×105 to 3× 

105 should be respected to avoid relevant scale effects 
in terms of air concentrations within 5 15Fr  . If 
one limitation is considered, then the other is implici- 
tly respected. For Fr  5, these limits have to be sele- 
cted more conservatively. The notion of scale effects 
is closely linked with the definition of specific set of 
two-phase air-water characteristics. 

The results of recent experimental investigations 
emphasized that the selection of the criteria to assess 
scale effects is critical. These results show that some 
parameters, such as bubble sizes and turbulent scales, 
are likely to be affected by scale effects, even in relati- 
vely large-size laboratory models (e.g., 2:1 to 3:1). No 
scale effect is only observed at full scale using the 
same fluids in prototype and model. As final words, 
the present study emphasizes (again) the needs for 
full-scale prototype data of two-phase air-water flows, 
typically observed in prototype hydraulic structures. 
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