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Abstract: Free surface flow in open-channel transitions is characterized by distributions of velocity and pressure that deviate from uniform
and hydrostatic conditions, respectively. Under such circumstances the widely used expressions in textbooks [e.g., E ¼ hþ U2=ð2gÞ and
hc ¼ ðq2=gÞ1=3] are not valid to investigate the changes in velocity and depth. A depth-averaged form of the Bernoulli equation for ideal
fluid flows introduces correction coefficients to account for the real velocity and pressure distributions into the specific energy equation.
The behavior of these coefficients in curvilinear motion at and in the neighbourhood of control sections was not documented in the literature.
Herein detailed two-dimensional ideal fluid flow computations are used to characterize the entire velocity and pressure fields in typical
channel controls involving transcritical flow, namely the round-crested weir, the transition from mild to steep slope and the free
overfall. The detailed two-dimensional ideal fluid flow solution is used to study the behavior of the depth-averaged coefficients, and a novel
generalized specific energy diagram is introduced using universal coordinates. The development is used to pursue a simplified critical
flow theory for curved flow, relevant to water discharge measurement with circular weirs. DOI: 10.1061/(ASCE)IR.1943-4774
.0000666. © 2013 American Society of Civil Engineers.
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Introduction

Transcritical flow in open channels involves distributions of veloc-
ity and pressure that deviates from uniform and hydrostatic condi-
tions, respectively (Montes 1998; Chanson 2006). Typical cases are
the flow over a round-crested weir or a free overfall, where the
flow curvature induces centrifugal force effects that results in a
non-hydrostatic pressure and nonuniform velocity (Jaeger 1956;
Vallentine 1969). The specific energy equation (Bakhmeteff
1932b) is a widely used tool in hydraulic engineering, although it
is based on the assumptions of a uniform velocity and hydrostatic
pressure distributions:

E ¼ hþU2

2g
ð1Þ

where E = specific energy, h = flow depth,U = mean flow velocity =
q=h, q = discharge per unit width, and g = gravity acceleration.
The underlying assumptions behind Eq. (1) imply that the specific
energy equation [Eq. (1)] is not valid to study the flow in open
channel transitions. However, the specific energy equation is
commonly used to explain, qualitatively, the changes of flow depth
and velocity in smooth transitions where friction can be neglected.
For example, Henderson (1966) used a differential form of
Eq. (1) to explain the flow over the round-crested weir, and Rouse

(1938) used Eq. (1) to describe changes in velocity and depth in
a channel step. This is a contradiction, because of in both flow prob-
lems the pressure is not hydrostatic, the velocity nonuniform
and Eq. (1) cannot yield any realistic prediction of velocity or depth.
Rouse (1932) made a worthy documentation of the two-
dimensional (2D) flow behavior of channel flow in short transitions
using model testing, i.e., the transition from mild to steep slope and
the free overfall. It appears, therefore, that either model testing or full
2D ideal fluid flow simulations (Vallentine 1969) are required to ob-
tain the accurate picture of flow in a channel transition. Jaeger (1956)
advocated the introduction of velocity and pressure correction coef-
ficients in the one dimensional specific energy equation to extend its
use to general flows in channel transitions. However, general analyti-
cal results were neither presented nor specific evaluation of the cor-
rection coefficients using detailed 2D ideal fluid flow computations.

A depth-averaged form of the Bernoulli equation for ideal fluid
flows introduces in the specific energy correction coefficients to
account for the actual velocity and pressure distributions (Liggett
1993; Chanson 2006). This higher order equation can be used to
describe the actual flow changes of velocity and depth with general-
ity. The first objective of this contribution is to study the behavior of
the depth-averaged coefficients in curvilinear motion at and in the
neighbourhood of control section using detailed 2D ideal fluid flow
computations. This will not provide a catalogue of depth-averaged
coefficients than can be read and then applied to all transitional
flow cases. Instead, this will reveal how the general energy equation
behaves at channel controls using selected test cases. Thus, the 2D
model will permit a generalized view of the one-dimensional (1D)
flow model in channel transitions This important theoretical infor-
mation will provide insights that can be used to find simplified
forms of the energy equation for practical applications. A new gen-
eralized specific energy diagram is introduced using universal co-
ordinates, where the flow in channel transitions can be depicted
with complete generality. The contribution presents for the first
time the depth-averaged form of 2D fluid flows at channel controls.
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A simplified critical flow theory for curved flow is proposed, based
on the depth-averaged results, for water discharge measurement
purposes with circular weirs.

Depth-Averaged Open Channel Flow Diagram

In open-channel flows with arbitrary distributions of velocity and
pressure, the depth-averaged specific energy is defined as (Rouse
1932; Liggett 1993; Montes 1998; Chanson 2006)

E ¼ 1

h

Z
h

0

�
p
γ
þ yþ u2 þ v2

2g

�
dy ¼ Λhþ β

q2

2gh2
ð2Þ

where p = pressure, γ ¼ ρg = specific weight of water, y = eleva-
tion, u = horizontal velocity in the x-direction and v = vertical
velocity in the y-direction; and the depth-averaged correction
coefficients Λ and β are, respectively

Λ ¼ 1

h2

Z
h

0

�
p
γ
þ y

�
dy ð3aÞ

β ¼ 1

U2h

Z
h

0

ðu2 þ v2Þdy ð3bÞ

where Λ = piezometric pressure correction coefficient and β =
kinetic energy correction coefficient. Eq. (2) expresses a depth-
averaged specific energy, calculated between streamlines for an
incompressible and inviscid fluid (Rouse 1938; Vallentine 1969;
Montes 1998).

At spillway crest or a free overfall (Fig. 1), the discharge may be
expressed as a function of the upstream head above crest as

q ¼ CdðgE3
minÞ1=2 ð4Þ

where Cd = discharge coefficient and Emin = upstream head above
crest (or minimum specific energy). The upstream head above crest
corresponds to the minimum specific energy for a frictionless fluid.
Introducing Eq. (4) into Eq. (1), it becomes

�
Λh
Emin

�
2
�

E
Emin

�
−
�

Λh
Emin

�
3

¼ βC2
dΛ

2

2
ð5Þ

Eq. (5) is a generalized channel flow relationship at an arbitrary
section in curvilinear flow. At a section of minimum specific energy
E ¼ Emin, Eq. (5) reduces to the equation developed by Chanson
(2006). Eq. (5) is plotted in Fig. 2, where it can be observed the
effect of the ratio Emin=E. Fig. 2 shows the relations between water
depth and discharge for a given specific energy when the flow
is curvilinear. This type of relationship was first proposed by
Bakhmeteff (1932b) for hydrostatic pressure and uniform velocity
distributions.

Using Fig. 2 the behaviour of curvilinear flows involving mini-
mum specific energy conditions in any part of the flow domain
can be investigated if the depth-averaged coefficients are deter-
mined. With this information, it is possible to obtain a one-
dimensional interpretation of the flow near critical flow sections.
To the authors’ knowledge, this information has so far not been
presented in the literature. Thus, in the next section a full 2D ideal
fluid flow numerical solution for flows with minimum specific
energy is developed. The depth-averaged coefficients will be
determined numerically and the 1D characteristics of the flow
investigated.

Numerical Solution of Two-Dimensional Ideal
Fluid Flow

Method of Solution

The estimate of the correction coefficients Λ and β requires a
detailed 2D description of the velocity field (u, v) at any point
(x, y) in order to evaluate numerically the integrals given by
Eqs. (3a) and (3b). The computation of the 2D flow field was done
solving the equations for an inviscid and irrotational flow. The
numerical model is based on a semi-inverse mapping of Laplace
equation, described in detail by Montes (1994) and Castro-Orgaz
(2013). The semiinverse mapping or x-ψ method (Montes 1992,
1994) is adequate for open-channel flow, where ψ ¼ stream func-
tion. Montes proposed to solve the Laplacian for y as a function of
the pair of variables (ψ, x). The Laplacian of this semi-inverse
transformation y ¼ yðx;ψÞ is

Fig. 1.Minimum specific energy in free surface flow: (a) spillway crest
(Little Nerang Dam, Australia on Dec. 28, 2010 for Emin ¼ 0.4 m);
(b) free overfall (Glenarbon weir on the Dumaresq River, Australia
in February 1999) Fig. 2. Generalized open-channel flow diagram
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∂2y
∂x2

�∂y
∂ψ

�
2

þ ∂2y
∂ψ2

�
1þ

�∂y
∂x

�
2
�
− 2

∂2y
∂x∂ψ

∂y
∂x

∂y
∂ψ ¼ 0 ð6Þ

This must be solved subject to suitable boundary conditions.
The computation directly yields the equation for each streamline
y ¼ y (x, ψ ¼ const), from which the velocity components of
the potential flow are obtained. The boundary sections up- and
downstream are selected where streamlines are parallel to the chan-
nel bottom. Eq. (6) was discretized using first-order central deriv-
atives and details of the numerical solution can be found elsewhere
(Thom and Apelt 1961; Montes 1992; Montes 1994; Castro-Orgaz
2013). Once the velocity profiles are computed from the numerical
solution of Eq. (6), the pressure distribution is deduced from the
Bernoulli equation.

Flow over a Round-Crested Weir

The experimental data of Sivakumaran et al. (1983) for a symmet-
rical hump of profile y ¼ 20 exp½−0.5ðx=24Þ2� (cm) is plotted in
Fig. 3(a). The computed water surface and bed pressure profiles
obtained from the 2D ideal fluid flow solution shows excellent
agreement with the experimental data, indicating the accuracy of
the 2D ideal fluid flow numerical model. The velocity and pressure
profiles at 3 representative sections are plotted in Fig. 3(b). At sec-
tion x=hc ¼ −2 the pressure distribution is hydrostatic, as indicated
by the coincidence of free surface and bottom pressure profiles in
Fig. 3(a). The u velocity profile is nonuniform, however, and the
vertical pressure v is clearly nonzero, as inferred from the notable

slope of the weir surface at this section. At the crest section, where
E ¼ Emin, the pressure distribution is below hydrostatic and the
velocity components (u, v) are non-uniform, with typical shapes
observed previously (Fawer 1937; Vo 1992). At the section x=hc ¼
þ4 the profiles (u, v) are essentially constant, but the pressure dis-
tribution is markedly higher than hydrostatic, given the centrifugal
effect on the supercritical flow in the tailwater weir face. The pro-
files (u, v, p) were generated in the mathematical model at 180
sections with a vertical division given by 20 streamlines. The in-
tegrals given by Eqs. (3a) and (3b) were determined numerically
and the results are plotted in Fig. 3(c). The streamwise evolution of
β shows values slightly above unity until the spillway crest. How-
ever, it grows rapidly in the supercritical portion of the weir. The
maximum value is 1.3 at x=hc ¼ 2.2. Such a relatively high value is
associated with the notable vertical velocity component v in the
supercritical flow portion. This can be seen in Fig. 3(c) by compar-
ing the results with the momentum correction coefficient βx
(i.e., Boussinesq coefficient) defined as

βx ¼
1

U2h

Z
h

0

u2dy ð7Þ

The Boussinesq coefficient is close to unity along the whole
computational domain, whereas β is especially high for
x=hc > 0. The coefficient Λ decreases from unity (hydrostatic pres-
sure) as the weir crest is approached, reaching a minimum value of
0.77 at x=hc ¼ 1.1 [Fig. 3(c)]. From that section the coefficient in-
creases given the reverse trend in centrifugal effects, reaching a
maximum value of 1.33 at x=hc ¼ 4.4. As the tailwater horizontal
section of the weir is approached, both β and Λ tend to unity.

The data presented in Fig. 3 permit a computation for every
channel section x=hc of the corresponding depth-averaged coordi-
nates of the flow (Λh=Emin, 1=2βC2

dΛ
2). Eq. (5) is plotted in Fig. 4

as a function of Emin=E, where the data corresponding to Fig. 3 are
reported. The crest point perfectly lies on the lower branch of the
diagram for Emin ¼ E, thereby confirming by 2D ideal fluid flow
computations that critical flow conditions takes place at this sec-
tion. The sections −6 < x=hc < 0 correspond to subcritical flow
motion; shortly before the crest every section lies in the upper part
of the diagram corresponding to the particular ratio Emin=E. Super-
critical flow sections in the domain 0 < x=hc < 6 are seen in the
lower part of the depth-averaged diagram for a particular value
of Emin=E. The points plotted in Fig. 4 from the 2D ideal fluid flow

Fig. 3. Round-crested weir: (a) free surface and bottom pressure pro-
files; (b) velocity and pressure distributions at selected sections;
(c) depth-averaged coefficients (Data from Sivakumaran et al. 1983) Fig. 4. Depth-averaged curvilinear motion over a round-crested weir
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data present a complete transcritical flow motion across a control
section in curvilinear flow.

Flow in Transition from Mild to Steep Slope

Fig. 5(a) presents the experimental data of Hasumi (1931) for
a slope transition composed by a horizontal reach followed by a
circular-shaped transition profile of R ¼ 0.1 m that finishes in a
steep slope reach of 45° inclination. The upstream and downstream
boundary sections were located at x=hc ¼ �3. For frictionless flow
E ¼ Emin ¼ 1.5hc is seen for x=hc < 0. The computed water sur-
face and bed pressure profiles obtained by 2D ideal fluid flow com-
putations are compared in Fig. 5(a) with the experimental data,
indicating a good agreement. The velocity and pressure profiles
at three representative sections are plotted in Fig. 5(b). At section
x=hc ¼ −1 the pressure distribution is close to hydrostatic. At the
brink section the pressure distribution is considerably below the
hydrostatic line and the velocity components (u, v) are highly non-
uniform, in agreement with Montes (1994). At the section x=hc ¼
þ1 the vertical velocity magnitude of v is large and of the same
order as u. The pressure distribution is close to zero in the major
part of this section. The integrals given by Eqs. (3a) and (3b) were
evaluated from the ideal fluid flow data and the numerical results
are plotted in Fig. 5(c). The variation of β shows values slightly
above unity until the brink section. For comparison, the variation
of the Boussinesq coefficient βx shows that it is close to unity along
the whole computational domain. It may be then concluded that the

effect of v in the computation of β is small for the horizontal chan-
nel reach. This supports the recent computations of Felder and
Chanson (2012), who investigated the velocity and pressure coef-
ficients in horizontal broad-crested weirs. However, there is a sharp
increase of β in the chute portion, not investigated by Felder and
Chanson (2012). This effect is due to the vertical velocity compo-
nent v in the steep channel, linked with the definition of the
y-coordinate and the chute bed slope. Note that U ¼ q=h is the
average velocity in the x-direction, not parallel to the chute bed
(Montes 1994). As previously indicated the magnitude of v is sim-
ilar to u at section x=hc ¼ þ1, for example. Near x=hc ¼ 3 results
β ≈ 2βx ≈ 2, originating from u ≈ v and βx ≈ 1. The maximum
value of β is 2.17 at x=hc ¼ 1.6. This high value is associated
with the notable nonuniform vertical velocity component v in
the supercritical flow portion. The coefficient Λ decrease from
unity (hydrostatic pressure) as the brink section is approached,
reaching a minimum value of 0.177 at x=hc ¼ 0.6. From that
section the coefficient increases given the partial recovery of pres-
sure, but in the tailwater portion it remains close to 0.75 due to the
bottom slope effect.

The data presented in Fig. 5 were used to obtain the correspond-
ing depth-averaged coordinates of the flow (Λh=Emin, 1=2βC2

dΛ
2).

The 2D data is plotted in depth-averaged coordinates in Fig. 6. The
whole flow profile in the horizontal slope reach is a critical flow, in
agreement with the physical study of Felder and Chanson (2012).
The brink section is a particular critical flow section where the ef-
fects of flow curvature are most pronounced. The flow in the super-
critical steep chute follows a similar trend to that observed in the
tailwater portion of the weir in Fig. 3.

Flow in Horizontal Free Overfall

The numerical model was used to solve the 2D problem of a free
overfall in a horizontal smooth channel. The 2D ideal fluid flow
results are compared with the measurements by Rouse (1932) in
Fig. 7(a), resulting in a good agreement. The velocity and pressure
profiles at three representative sections are plotted in Fig. 7(b), and
are in agreement with previous results by Montes (1992). The
depth-averaged coefficients are depicted in Fig. 7(c), showing a
similar behaviour to the mild to steep transition flow. A particular
issue is that the pressure inside the jet (x=hc > 0) is close to zero
shortly after the brink section, resulting in an asymptotic value for

Fig. 5. Transition from mild to steep slope: (a) free surface and bottom
pressure profiles; (b) velocity and pressure distributions at selected sec-
tions; (c) depth-averaged coefficients (Data from Hasumi 1931)

Fig. 6. Depth-averaged curvilinear motion over a transition from mild
to steep slope

© ASCE 04013006-4 J. Irrig. Drain Eng.

J. Irrig. Drain Eng. 2014.140.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
co

le
 P

ol
yt

ec
hn

iq
ue

 F
ed

er
al

e 
on

 1
2/

17
/1

3.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Λ in the jet of 0.5. The 2D ideal fluid flow data is plotted in
depth-averaged form in Fig. 8. The flow motion is similar to the
slope break flow. The horizontal reach flow is a critical flow mo-
tion, whereas the free jet behaves essentially as a variable-slope
steep chute with zero bottom pressure. The high values of β are
associated with the notable vertical velocity component v in the

(vertical) y-direction as compared to the depth-averaged velocity
U in the x-direction.

Critical Depth in Curvilinear Overflows

Analytical Development

In the previous section a full 2D model was applied to channel tran-
sitions. It was found that both β and Λ deviates from the standard
hydraulic values β ¼ 1 and Λ ¼ 1. These effects need to be ac-
counted for in practical applications. In irrotational flow the local
energy head is a constant for all the streamlines of an ideal fluid
flow (Rouse 1938; Vallentine 1969). In this case, the value of E
given by Eq. (2) may be evaluated by the specific energy of the
free surface streamline. This idea was pursued by Bakhmeteff
(1932a), who assumed that, at the section of Emin in flow over a
spillway crest, the velocity distribution follows a free vortex
law. Using this simple approximation, the mathematical expression
for β is determined and Λ follows from Bernoulli’s relation. The
analytical expression for E is (Bakhmeteff 1932a)

E ¼ Λhþ β
q2

2gh2
¼ hþ Ω2

q2

2gh2
ð8Þ

where the curvature correction coefficient Ω is

Ω ¼ κh
ð1þ κhÞ lnð1þ κhÞ ð9Þ

and κ ¼ 1=R is the crest curvature and R is the crest radius. Note
that this simple approximation permits to reduce the general form
of the energy equation with undetermined (general) coefficients
[(Eq. (2)], to a simplified equation that is a function of the local
water depth [(Eq. (8)]. This step is of great service for practical
purposes, as given R the function E only depends on h, thereby
allowing 1D critical flow computations. Dressler (1978) developed
curved flow equations accounting for bed curvature by perturba-
tions. Dressler equations for steady flow reduce to the free vortex
velocity distribution, and, the steady specific energy equation used
by Sivakumaran et al. (1981, 1983) is Eq. (8), originally proposed
by Bakhmeteff (1932a). Ramamurthy and Vo (1993a) used Dressler
vortex flow velocity distribution to find an analytical function for
the discharge coefficient Cd in weir flow. This function depends
upon the value of Emin, hcrest (crest overflow depth) and the crest
bottom pressure. Thus, an evaluation of Cd using this proposal
requires estimation of these parameters. Bakhmeteff (1932a)
suggested imposing critical flow conditions to Eq. (8). As demon-
strated with the aid of the depth-averaged diagram using 2D ideal
fluid flow computations the specific energy reaches a minimum
value at an overflow crest. Thus it is fully justified to use Eq. (8)
to find an analytical relationship for the critical depth following
Bakhmeteff (1932a). The mathematical condition of an extreme
in the specific energy forces E to satisfy the identity

dE
dh

¼ d
dh

�
Λhþ β

q2

2gh2

�
¼ d

dh

�
hþ Ω2

q2

2gh2

�
¼ 0 ð10Þ

Eq. (10) can be used to find analytically the relationship be-
tween the flow at the weir crest, hcrest, and the minimum specific
energy Emin. Note that the second identity of Eq. (10) permits
analytical developments. Developing the last identity of Eq. (10)
results in

Fig. 7. Free overfall: (a) free surface and bottom pressure profiles;
(b) velocity and pressure distributions at selected sections;
(c) depth-averaged coefficients (Data from Rouse 1932)

Fig. 8. Depth-averaged curvilinear motion over a free overfall
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q2

gh3crest

�
Ω2 − Ωhcrest

dΩ
dh

�
¼ 1 ð11Þ

and, using Eq. (9) for finding dΩ=dh

hcrest
hc

¼
�
Ω2

�
Ωþ κhcrest

1þ κhcrest

��
1=3

ð12Þ

Eq. (12) is the analytical solution for critical curvilinear flow.
Introducing Eq. (12) into Eq. (8) one obtains the value of Emin as

Emin

hc
¼ hcrest

hc
þ Ω2

2

�
hcrest
hc

�−2
ð13Þ

The combination of Eqs. (4) and (13) give the analytical func-
tion for Cd based upon critical vortex flow as

Cd¼
�
Emin

hc

�−3=2
¼

�
hcrest
hc

þ Ω2

2

�
hcrest
hc

�−2�−3=2
ð14Þ

The procedure to establish the head-discharge relationship of a
weir crest is as follows: (a) select a value of hcrest=R; (b) compute
hcrest=hc from Eq. (12); (c) compute Emin=hc from Eq. (13); (d) cal-
culate Cd from Eq. (14); (e) find the quotient hcrest=Emin dividing
Eqs. (12) and (13); (f) compute Emin=R from the result of step
(d) using the value of hcrest=R.

Application to Flow Measurement above Circular Weirs

Water discharge measurement in open channel systems can be
done using weirs (Bos 1976). A particular type of weir of wide
interest is the circular weir [Fig. 9(a)] (Chanson and Montes
1998; Ramamurthy et al. 1992; Ramamurthy and Vo 1993b), where
the flow can be considered inviscid and irrotational (Ramamurthy
et al. 1994), provided that certain minimum dimensions on R

prevail to avoid scale effects (Matthew 1963, 1991). An advantage
of the irrotational critical flow theory advocated by Bakhmeteff
(1932a) is that Cd depends only of Emin=R, such that, for a given
R, a unique measurement of Emin yields a prediction of the dis-
charge. This is different from the application of the Dressler equa-
tions (e.g., Ramamurthy and Vo 1993a) in which no critical flow
condition was invoked to the flow equation. The critical vortex flow
theory in circular weirs deserves attention, therefore. A number of
experimental data were re-analysed. The results in terms of Cd are
plotted in Fig. 9(b), and the curvilinear critical flow depth data
are illustrated in Fig. 9(c). The predictions of Cd and hcrest=hc using
the critical vortex flow theory are depicted in Fig. 9. It can be
seen that the agreement with experimental data is good up to
Emin=R ¼ 0.7, while the theory could be considered acceptable
up to Emin=R ¼ 1.5, beyond which a free vortex law for the velocity
profile ceases to be valid (Ramamurthy and Vo 1993a).

Discussion

The present work extends the use of the classical specific energy
equation to study the flow in open channel transitions by introduc-
ing a generalized depth-averaged diagram where the pressure is not
hydrostatic and the velocity nonuniform. This diagram is based on
a depth-averaged form of the Bernoulli equation at any arbitrary
section of the channel transition. The development is a generaliza-
tion of the equation proposed by Chanson (2006) for the minimum
specific energy section. The depth-averaged coefficients β and Λ
are general definitions for 2D flow and were evaluated numerically
for selected test cases.

The characterization of the free surface flow in frictionless
open channel transitions requires the determination of the depth-
averaged velocity and pressure coefficients, a task so far not
done in the literature. Detailed 2D ideal fluid flow computations
were used to obtain this information that was introduced in the

Fig. 9. Critical vortex flow over weir crest: (a) notation; (b) discharge coefficient; (c) critical depth (Data from Blau 1963; Chanson and Montes 1998;
Castro-Orgaz 2010)
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generalized depth-averaged diagram. The transcritical flow behav-
iour was first presented rigorously in depth-averaged form using
2D ideal fluid flow data. It was confirmed that critical flow con-
ditions takes place at the overflow section, while subcritical and
supercritical flow portions are clearly highlighted. The purpose
of this contribution is not to provide an output in the form of
depth-averaged coefficients applicable to all flow cases in chan-
nel transitions. Rather than this, the purpose of this contribution
is to analyze how the general energy equation accounting for
nonuniform velocity and nonhydrostatic pressure distributions
behaves at channel controls. For this task selected flow cases
were solved.

The detailed depth-averaged study supports the assumption of
critical flow conditions at an overflow crest (Chanson 2006) and on
the horizontal reach preceding a steep chute (Felder and Chanson
2012). The study outcomes are relevant to water discharge mea-
surements in free surface systems, usually conducted by installing
weirs of various shapes. In practice, a particular weir design is the
circular weir. If scale effects are avoided, the flow above the
rounded weir can be simulated using the equations of an inviscid
and irrotational flow. Bakhmeteff (1932b) proposed the specific
energy equation for hydrostatic pressure and uniform velocity, as-
sumptions that are not accurate at an overflow crest. The generali-
zation to curvilinear flow theory is based upon a free vortex
velocity law (Bakhmeteff 1932a) and the results yield the critical
flow conditions for curvilinear motion. The analytical development
based on this concept was pursued and applied to water discharge
measurement using detailed test data.

The present development differ from the works of Sivakumaran
et al. (1981, 1983) and Ramamurthy and Vo (1993a), in which the
Dressler model was applied for steady-state conditions without re-
sorting to a critical flow theory. Alternatively, critical irrotational
flow theory at an overflow crest can be developed using Boussinesq
equations (Matthew 1991; Montes 1998). The mathematical appa-
ratus for using Boussinesq equations is however computationally
intensive compared to the simple vortex flow theory.

Conclusions

The classical specific energy equation E ¼ hþU2=ð2gÞ cannot
be used to describe the changes of velocity and depth along short
channel transitions, despite its use in textbooks based on the so-
called specific energy diagram. A generalized depth-averaged
diagram is introduced for flows with arbitrary distributions of
velocity and pressure that can be used to properly describe the
flow in channel transitions. It is shown that any 2D ideal fluid
flow can be depicted in such system of coordinates with general-
ity. For this task, a detailed 2D ideal fluid flow solution of typical
channel transitions was developed. From the computational data,
a detailed description of the depth-averaged channel corrections
coefficients, so far not available in the literature, was presented.
The ideal fluid flow data was used to present a rigorous picture of
the depth-averaged curvilinear flow motion in open channel tran-
sitions for selected test cases. The depth-averaged analysis of the
motion confirms that critical curvilinear flow conditions take
place at an overflow crest and at a horizontal reach preceding
a steep chute. The finding was used to pursue a simplified critical
irrotational flow theory at overflow sections. From the analytical
development, an equation for the discharge coefficient of a weir is
propose; this equation is demonstrated to provide accurate water
discharge estimates up to Emin=R ¼ 0.7, and may be considered
acceptable up to 1.5.

Acknowledgments

The authors acknowledge the inspirational contribution of
Dr. Sergio Montes (Hobart, Australia) and his original input to
the study.

Notation

The following symbols are used in this paper:
Cd = discharge coefficient (-);
E = specific energy head (m);

Emin = minimum specific energy head (m);
g = acceleration of gravity (m=s2);
H = total energy head (m);
h = flow depth measured vertically (m);
hc = critical depth for parallel-streamlined flow

(m) = ðq2=gÞ1=3;
hcrest = crest flow depth (m);

p = pressure (N=m2);
q = unit discharge (m2=s);
R = radius of circular-arc (m);
U = mean flow velocity (m=s) = q=h;
u = velocity in x-direction (m=s);
v = velocity in y-direction (m=s);
x = horizontal distance (m);
y = vertical elevation (m);
β = kinetic energy correction coefficient (-);
βx = momentum correction coefficient or Boussinesq

coefficient (-);
γ = specific weight of water (N=m3);
η = vertical coordinate above channel bottom (m);
κ = bottom curvature (m−1);
Λ = piezometric pressure correction coefficient (-);
ρ = water density (kg=m3);
ψ = stream function (m2=s); and
Ω = curvature coefficient (-).
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