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Abstract: One basic principle of fluid mechanics used to resolve practical problems in hydraulic engineering is the Bernoulli theorem
along a streamline, deduced from the work-energy form of the Euler equation along a streamline. Some confusion exists about the
applicability of the Bernoulli theorem and its generalization to open-channel hydraulics. In the present work, a detailed analysis of the
Bernoulli theorem and its extension to flow in open channels are developed. The generalized depth-averaged Bernoulli theorem is
proposed and it has been proved that the depth-averaged specific energy reaches a minimum in converging accelerating free surface flow
over weirs and flumes. Further, in general, a channel control with minimum specific energy in curvilinear flow is not isolated from water
waves, as customary state in open-channel hydraulics.
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Introduction

One of the most useful principles of fluid mechanics to solve
practical problems in hydraulic engineering is the Bernoulli theo-
rem along a streamline, which is deduced from the work-energy
form of the Euler equation along a streamline �Rouse 1970�.
Many applications in open-channel hydraulics are based upon
such a theorem that is only valid along a given streamline in first
instance. Some confusion exists about the applicability of the Ber-
noulli theorem, and its generalization to open-channel hydraulics.
Very few isolated studies �Liggett 1993; Chanson 2006, 2008�
have developed the Bernoulli equation to open-channel flow
problems. The extension of this principle to open-channel flows
provides a basic equation applicable to the calculation of the
minimum specific energy and critical flow conditions, a physical
phenomenon that determines the head-discharge relationship in
control structures used for water measurement in irrigation and
sewage techniques, as flumes and weirs �Fig. 1�.

In the present study, a detailed and generalized extension of
the Bernoulli theorem to open-channel flow is developed. Using
analytical and experimental results, the occurrence of minimum
specific energy in open channels is reanalyzed, and general results
for the critical flow depth in curvilinear flow are provided. Also,
some practical advice for the selection of gauging stations is high-
lighted in relation to wave motion at the section of minimum
specific energy
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Bernoulli Theorem

The integration of the Navier-Stokes equations along a streamline
assuming that the flow is steady and the fluid is inviscid and
incompressible, yields the Bernoulli equation along a streamline
�Rouse 1970; Liggett 1994; Chanson 2004, 2006�

p

�
+ z +

V2

2g
= const �1�

where p /�=pressure head; z=vertical elevation of the fluid par-
ticle; and V=magnitude of velocity vector. The vorticity causes
the constant in Eq. �1� to change from one streamline to another.
If both sides of Eq. �1� are multiplied by the elementary discharge
across a streamline, dQ=udA, with Q=discharge, A=flow cross
section area, u=component of velocity vector normal to A, and
the resulting expression is integrated across a channel section, one
obtains a constant quantity given by

�
0

A � p

�
+ z +

V2

2g
�udA = const �2�

Both sides of Eq. �2� may be divided by the total discharge Q, that
is assumed a constant for all sections, from which it is obtained
that the total head H of a cross section is conserved in the flow
direction

H =
1

Q
�

0

A � p

�
+ z +

V2

2g
�udA = const �3�

The total head H gives the total convective flow of energy across
A, as discussed in detail by Jaeger �1956�. A cross-sectional total
piezometric pressure coefficient Ke may be defined as �Jaeger
1956�

Ke =
1

hQ
�

0

A � p

�
+ y�udA �4�

where h=flow depth and y=coordinate in the vertical direction
above the channel bed, and the extended Coriolis coefficient � for

curvilinear flow is �Rouse 1970�
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� =
1

U2Q
�

0

A

V2udA �5�

where U=Q /A=mean flow velocity. It may be remarked that
Eq. �5� is a general expression for a Coriolis coefficient, in con-
trast to the widely used expression

� =
1

U2Q
�

0

A

u3dA �6�

that does not take into account all the velocity components, and,
thus, is only accurate for flows with parallel streamlines. The total
head H may be rewritten, using Eqs. �4� and �5�, as

H = zb + Keh + �
U2

2g
= zb + E = const �7�

where zb=channel bed elevation and E=total specific energy.
Eq. �7� was developed by Jaeger �1956� and discussed recently by
Castro-Orgaz �2008�. Using Eq. �7�, the equation of motion is
simply written as

dH

dx
=

dzb

dx
+

dE

dh

dh

dx
= 0 �8�

Eq. �7� was deduced from the application of the Bernoulli theo-
rem along a streamline, and can be viewed as the generalized
Bernoulli theorem for open-channel flow in terms of the total
head H, and, hence, of the total flow of energy. Critical flow
conditions, as given by the minimum specific energy dE /dh=0,
are deduced from Eq. �8� when dzb /dx=0: i.e., at the crest of a
weir �Henderson 1966�, with a continuous smooth free surface
�dh /dx�0� and without any vertical flow profile �Montes 1998�
as classically stated by Bélanger �1828�.

If we are now interested in making a cross-sectional mean
value for the energy head of all the streamlines, Hm, we cannot
simply multiply Eq. �1� by dA and then divide the result by A, as
the cross-sectional area A�x� varies along the flow according to
the local flow depth h=h�x�. However, if the Bernoulli theorem
for a streamline, given by Eq. �1�, is differentiated

d

dx
� p

�
+ z +

V2

2g
� = 0 �9�

it is mathematically permissible to write

�
0

A d

dx
� p

�
+ z +

V2

2g
�dA = 0 �10�

Fig. 1. Critical flow over �a� round-crested weirs; �b� Venturi
channels
Using the Leibnitz rule, Eq. �10� can be rewritten as
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2

2g
�dA
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= 0 �11�

where Vo=free surface streamline velocity. The cross-averaged
mean head Hm is defined as

Hm =
1

A
�

0

A � p

�
+ z +

V2

2g
�dA �12�

It is worth pointing out that the definition of a mean value of the
energy head across a section was first defined by Rouse �1932�, in
relation to curvilinear flows in spillways.

Using Eq. �12�, Eq. �11� is rewritten as

dHm

dx
=

�Ho − Hm�
A

dA

dx
�13�

which is the form of the Bernoulli theorem in terms of the cross-
sectional averaged mean head for all the streamlines Hm, with
Ho=zb+h+Vo

2 /2g=free surface streamline energy head. A first
point that deserves attention is that the depth-averaged form of
the Bernoulli theorem applied to an open-channel flow does not
imply a constant. Indeed, the head Hm�x� changes due to the vary-
ing flow area A�x� in the flow direction, as well as due to the local
difference between the energy head of the free surface Ho in
relation to the mean value Hm across the depth.

A cross-sectional averaged piezometric pressure coefficient Km

can be defined as �Rouse 1932; Chanson 2006�

Km =
1

hA
�

0

A � p

�
+ y�dA �14�

and the “apparent” Boussinesq coefficient for curvilinear flow is
�Chanson 2006�

� =
1

U2A
�

0

A

V2dA �15�

Eq. �15� is refereed to as an “apparent” Boussinesq coefficient,
as it contains the magnitude of the velocity vector V, which is
a scalar magnitude arising from the energetic nature of the
Bernoulli theorem along a streamline �Rouse 1970�. The
Boussinesq coefficient is a tensorial magnitude, defined as a vec-
tor in a given direction, along which the conservation of momen-
tum is applied �Yen 1973�. Therefore, the Boussinesq coefficient
is defined in the x direction as �Yen 1973; Liggett 1993�

�xx =
1

U2A
�

0

A

u2dA �16�

Using Eqs. �14� and �15�, the total mean head Hm is rewritten as

Hm = zb + Kmh + �
U2

2g
= zb + Em �17�

where Em=depth-averaged specific energy, as given by Chanson
�2006�. Expanding Eq. �13�, yields

dzb

dx
+

dEm

dx
=

�Ho − Hm�
A

dA

dx
�18�
For plane channel flow, Eq. �18� can be written as
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dzb

dx
+

dEm

dh

dh

dx
=

Ho − Hm

h

dh

dx
�19�

which is the generalized depth-averaged Bernoulli theorem for
open-channel flows. At the crest of a weir, dzb /dx=0 and Eq. �19�
yields

dEm

dh
=

Ho − Hm

h
�20�

Eq. �20� implies that, strictly speaking, the depth-averaged mean
specific energy is only minimal �dEm /dh=0� at the crest of a weir
when the flow is irrotational and, therefore, Ho=Hm. In a real flow
the vorticity causes a difference between Ho and Hm. However, in
short transitions with accelerating converging streamlines, as in
the case of flumes and weirs, the flow is nearly irrotational and
thus one obtains

dEm

dh
=

Ho − Hm

h
� 0 �21�

from which

Hm = zb + Kmh + �
U2

2g
= zb + Em � const �22�

Eq. �22� was successfully verified by Chanson �2006� with test
data on round-crested weirs, computing the coefficients � and Km

using flow net diagrams. Montes �1998� estimated the coefficients
� and Km of Eq. �22� with a Boussinesq-type approach, and com-
pared successfully the results with test data on parabolic weirs. In
flows with nearly parallel streamlines, the flow is “gradually var-
ied,” and the pressure is hydrostatic �Km=1�, the vertical velocity
is negligible �u�V� and the free surface slope is very small
�dh /dx�0�. Under these conditions, the generalized depth-
averaged Bernoulli theorem �Eq. �19�� gives

zb + h + �xx

U2

2g
= const �23�

which was derived by Liggett �1993�. It is of interest to remark
that the result of Liggett �1993� was obtained from the depth-
averaged form of the Euler equations for flows with parallel
streamlines and a velocity shape almost invariant with distance
��xx�const�. The depth-averaging process of the momentum
equation yields an equation with a Boussinesq coefficient
�Eq. �23�� rather than with a Coriolis coefficient �Eq. �7��, in

Fig. 2. Experimental data �Fawer 1937� over cylindrical weir: ���
dimensionless pressure head distribution p /�Eo�y /h�, ��� dimen-
sionless total velocity distribution V / �2gEo�1/2�y /h�, ��� dimension-
less total head distribution E /Eo�y /h�
agreement with the full integration of the energy and momentum
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fluid flow equations in open-channel flow �Yen 1973�. Eq. �23�
proved to be a particular case of the more general relation
�Eq. �19�� developed herein.

The test data of Fawer �1937� with flow over round-crested
weirs and of Khafagi �1942� in Venturi flumes were used to verify
Eq. �21�. Fig. 2 presents the data of Fawer �1937� for a circular
weir of radius 3.25 and 30.3 cm width under a discharge of
0.01525 m3 /s, a flow depth h=5.37 cm and a specific energy
head over the weir of E=7.68 cm. The test data show that the
flow is nearly irrotational, with a computed value dEm /dh
=−0.012 using Eq. �20�. Figs. 3–5 show the data of Khafagi for a
Venturi channel of throat width 12 cm, inlet width 30 cm, radius
of channel sidewalls 54.5 cm and discharges of 22, 17.5, and 14
L/s, respectively. The test data yield dEm /dh=0.00498, dEm /dh
=0.00547, and dEm /dh=0.00796, for discharges of 22, 17.5, and
14 L/s, respectively. Thus, theory and experiments support the
occurrence of minimum depth-averaged specific energy at chan-
nel controls.

Minimum Specific Energy

The concept of critical flow was historically developed as
the singularity in the backwater equation for open-channel flows
�Bélanger 1828; Chanson 2004�. Later, it was concluded by
Bakhmeteff �1932� what the conditions are at which the specific

Fig. 3. Experimental data �Khafagi 1942� in a Venturi channel
for Q=22 l /s: ��� dimensionless pressure head distribution
p /�Eo�y /h�, ��� dimensionless total velocity distribution
V / �2gEo�1/2�y /h�, ��� dimensionless total head distribution
E /Eo�y /h�

Fig. 4. Experimental data �Khafagi 1942� in a Venturi channel
for Q=17.5 l /s: ��� dimensionless pressure head distribution
p /�Eo�y /h�, ��� dimensionless total velocity distribution
V / �2gEo�1/2�y /h�, ��� dimensionless total head distribution
E /Eo�y /h�
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energy reaches a minimum value. The developments herein prove
that, in curvilinear flow, it is possible to define the concept of
critical flow either using a convective energy flux total specific
head E or a depth-averaged specific head for all streamlines
across the depth, Em. If the flow is irrotational, it is also permis-
sible, and even simpler, to write

Em � Eo = h +
Vo

2

2g
�24�

where Eo=free surface specific energy
Thus, the depth-averaged specific energy is accurately repre-

sented by the specific energy of the free surface streamline. This
approach avoids the use of depth-averaging coefficients, and per-
mits one to represent the head-discharge relationship with only
one parameter, a “fictitious” Coriolis coefficient �o defined as

�o = �Vo

U
�2

�25�

that represents the quotient between the free surface and the mean
velocities. From Eq. �24�, the generalized channel flow relation is,
using Eq. �25� �Castro-Orgaz 2008�

� h

Eo
�2� h

Eo
− 1� +

�oCd
2

2
= 0 �26�

where Cd=discharge coefficient=Q / �b�gHo
3�1/2� and b=channel

width.
Eq. �26� and the experimental data of Chanson and Montes

�1997, 1998�, series QIIA, for flow over circular-crested weirs,
the data of Fawer �1937� of flow over round-crested weirs,
the data of Blau of parabolic weirs �Montes 1998�, the data of
Kindsvater �1964� �model 2, free flow conditions� on flow over
trapezoidal-profile weirs, and the data of Khafagi �1942� for
circular-shaped inlet flume of rectangular cross section are plotted
in Figs. 6�a–c�. As shown in Figs. 6�a–c�, all the data of critical
flow in flumes and weirs collapse in the upper branch of
the curve. Then, of the two branches of the discharge curve, only
the upper branch has a physical meaning of critical flow at a
weir crest and at a flume throat, corresponding to relations h /Eo

�2 /3 for curvilinear flows. In parallel flows, h /Eo=2 /3 and,
consequently, the particular point �oCd

2 /2=4 /27 in Fig. 6 is ob-
tained. However, the lower part of the curve was not close to any
experimental data. This is because Eq. �26� is a mathematical

Fig. 5. Experimental data �Khafagi 1942� in a Venturi channel
for Q=14 l /s: ��� dimensionless pressure head distribution
p /�Eo�y /h�, ��� dimensionless total velocity distribution
V / �2gEo�1/2�y /h�, ��� dimensionless total head distribution
E /Eo�y /h�
relation between the discharge, the specific energy, and the flow
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depth at the crest, with up to three real values of the flow depth-
energy ratio for any product of the square of discharge coefficient
and fictitious Coriolis coefficient. For the establishment of critical
flow conditions, two simultaneous conditions are required. First,
an extreme in the channel geometry �maximum elevation in a
weir, minimum width in a flume, Henderson 1966� is needed
to create a potential section for the appearance of critical flow.
Second, in the extreme section, a sufficient condition given by
the derivative dEo /dh=0 is required to provide a unique relation
between Eo and h for a given Q, avoiding two of the solutions of
Eq. �26� that do not imply critical flow conditions. A comparison
of test data with the whole curve �see Figs. 6�a–c�� simply shows
that the upper branch is the critical flow solution of the three
possible roots. However, although the critical points can only lie
in the upper branch, other possible types of flows can also lie
there. Subcritical flow over the whole weir profile implies higher
tailwater levels than the modular limit of the weir �Dominguez
1959; Montes 1998�. Under these conditions, the relation h /Eo at
the weir crest increases above the values for free flow. As the
tailwater level increases for a given upstream head Eo, the flow
that passes over the weir is reduced. Extreme submergence con-
ditions imply h /Eo=1, and, consequently, �oCd

2 /2=0, which is
the initial point of the upper branch.

The geometry of a broad-crested weir does not allows for an
extreme in the channel geometry, given by a channel bottom el-
evation or a width contraction, and thus, critical depth and its
position on the weir are governed mainly by frictional effects and
streamline curvature �Rouse 1932�. It is then futile to attempt to
define the discharge characteristics of the broad-crested weir try-
ing to locate the real critical depth section, which, in the more
general case, is not necessarily equal to the hydrostatic pressure
critical depth, a case in which computations become complex
�Castro-Orgaz 2008�. Then, although in the strictest sense one

Fig. 6. Discharge curve of flow in open channels �a� �—� Eq. �26�,
��� experimental data Chanson and Montes �1997, 1998� flow over
cylindrical weirs, ��� experimental data Khafagi �1942� flow in
Venturi channels; �b� �—� Eq. �26�, ��� experimental data Fawer
�1937� flow over round-crested weirs, ��� experimental data Blau
�Montes 1998� flow over parabolic weirs; �c� �—� Eq. �26�, ���
experimental data Kindsvater �1964� flow over trapezoidal-profile
weirs; and �d� �—� Eq. �26�, ��� experimental data Gonzalez and
Chanson �2007� flow over broad-crested weirs, ��� experimental data
Chanson �2005� in near critical flows
cannot find the critical depth section on a broad-crested weir with
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any accuracy, it is relevant to analyze data on flow over broad-
crested weirs. The test data of Gonzalez and Chanson �2007� for
a large broad-crested weir are also plotted in Fig. 6�d�, corre-
sponding to flow depths in gauging stations on the first half of
broad-crested weir models. As seen in Fig. 6�d�, the flow over a
broad-crested weir may be properly called transcritical, rather
than critical, as the flow changes between the two real branches of
Eq. �26� without a definite flow pattern in terms of a critical depth
relationship h /Eo. In this regard, it is also interesting to plot data
with near critical flows �Chanson 2005� in Fig. 6�d�. In those
cases, all the experiment points lie in the upper branch, but, in
most cases, the relationship h /Eo is exceedingly high ��0.85� for
representing critical flows, even when including streamline cur-
vature effects. Note that flow over round-crested weirs �Fawer
1937� imply h /Eo around 0.7. It proves again that although
curved streamline critical flows lie only in the upper branch, with,
typically, h /Eo�0.7 as a mean, other types of curvilinear flows
can also be found there, as near critical flows.

Water Wave Celerity

In the previous section, a set of expressions for the Bernoulli
theorem in an open-channel flow were developed, each of which
could be used to define critical flow based on the concept of
minimum specific energy. Recently, it was shown that in general
critical flow is not single magnitude when it is defined with the
energy and momentum principles �Castro-Orgaz 2008�. A simple
and relevant case can be explained in relation to the weir flow
case, and the Bernoulli theorem. Consider the weir flow drawing
of Fig. 7. At the weir crest, the streamlines are curved and sloped,
and the velocity distribution increases from the free surface to the
channel bottom. According to the Bernoulli theorem for a stream-
line, an increase in the velocity head causes a drop in the pres-
sure, which is no longer hydrostatic across the depth. The increase
in the velocity causes an increase in the discharge for a given
head, and the test data of Fawer �1937� and the computations of
Chanson �2006� proved this flow feature. Critical flow can also be
defined using momentum considerations, in relation to the
shallow-water wave celerity of a one-dimensional �1D� flow
�Montes 1998; Chanson 2004�

c = �gh�1/2 �27�

with c=shallow-water wave velocity of a 1D flow. Eq. �27� was
first proposed by Joseph-Louis Lagrange �1781�. Fig. 7 shows
that, under critical flow conditions, only a particular streamline
has a velocity equal to the celerity c. As a result, the flow region
above the section of minimum specific energy �weir crest� is not
isolated from shallow-water waves. This shows that minimum
specific energy considerations are not necessarily in agreement

Fig. 7. Minimum specific energy and celerity of shallow-water wave
over a round-crested weir
with momentum concepts when defining critical flow conditions.
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Similar conclusions were outlined by Castro-Orgaz �2008�, who
improved the celerity c by incorporating the nonuniform velocity
and nonhydrostatic pressure effects. Therefore, only in the de-
scending branch of the weir, where the flow is parallel, one can
find sections isolated from shallow-water waves. The flow feature
discussed is relevant in such irrigation works as the flow dividers
analyzed by Dominguez �1959�.

The conclusions of this discussion demand caution in engi-
neering practice when trying to define whether the flow is sub-
critical or supercritical by means of causing surface waves in a
channel and observing the direction in which these waves travel.
It was proved that the section of minimum specific energy
�i.e., critical flow section� is in general not a section which equals
the shallow-water wave celerity. For the test data of Fawer
�Fig. 2� the dimensionless critical depth at the weir crest is
h /Ho=0.699, and the dimensionless celerity is c / �2gEo�1/2

= �0.699 /2�1/2=0.5912. This value is very near to the dimension-
less velocity at the free surface �Vo / �2gEo�1/2=0.548, see Fig. 2�,
so, in this case, nearly the whole flow section is isolated
from “shallow-water waves.” More questionable is the fact that
Eq. �27� is the “computational velocity of floods” when the
method of characteristics is applied to the Saint-Venant gradually
varied unsteady shallow-flow equations, but a two-dimensional
�2D� water wave celerity may differ from Eq. �27� �Montes 1998�
when streamline curvature is important. Moreover, when nearly
the whole section is isolated from shallow-water waves, as in the
case of the experiments of Fawer �1937�, it does not give any
guarantee of a similar performance under a real 2D water wave
motion. This flow feature deserves some discussion. Hager �1991�
showed that the velocity distribution over round-crested weirs can
be described using the free vortex approach V �R+y�=const, with
R=curvature radius at channel bed. Normalized velocity profiles
V / �gh�1/2�y /h� for two typical values of the dimensionless head,
E /R=1 and 2.5, are plotted in Fig. 8. At the elevation y /h where
V / �gh�1/2=1 the velocity profile equals the shallow-water wave
celerity. Fig. 8 shows that the incipient shallow-flow celerity ap-
pears at y /h=0.71 and 0.8 for E /R=2.5 and 1, respectively, indi-
cating that in general, as a mean, the upper 25% of the flow depth
is not isolated from shallow-water waves. Some additional data
can be added to Fig. 8, considering the general dimensionless
celerity c / �gh�1/2�� /h� of linear Airy waves �Montes 1998�

c

�gh�1/2 = 	 tanh�2�h/��
2�h/� 
1/2

�28�

where �=wavelength. For shallow flows, � /h→� and Eq. �28�

Fig. 8. Water wave celerity and velocity profiles, �——� normalized
velocity profile V / �gh�1/2�y /h� for E /R=1, �– –� normalized velocity
profile V / �gh�1/2�y /h� for E /R=2.5, ��� dimensionless celerity
c / �gh�1/2�� /h� of linear Airy waves �Eq. �28��
equals Eq. �27�. As seen in Fig. 8 the celerity of linear waves
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support substantively the previous conclusions, proving that, in
general, the section of minimum specific energy is not isolated
from water wave motion.

Conclusions

A detailed analysis of the Bernoulli theorem and its extension to
flow in open channels has been developed. From the analytical
results of the extension of the Bernoulli principle to open-channel
flow, the generalized depth-averaged Bernoulli theorem is pro-
posed, extending the earlier works of Liggett �1993� and Chanson
�2006,2008�. From the new depth-averaged Bernoulli equation, it
was shown that the depth-averaged specific energy reaches a
minimum in converging accelerating free surface flow over weirs
and flumes. A generalized open-channel flow diagram based on
the Bernoulli theorem was used to show analytically the critical
depth relationships in curvilinear flows. A comparison with ex-
periment data of round-crested weirs and Venturi channels dem-
onstrated the validity of the analytical findings. In general, a
channel control with minimum specific energy in curvilinear flow
is not isolated from water waves. Hence, any method for produc-
ing waves in water is usually not appropriate for deciding whether
the flow is subcritical or supercritical.

Notation

The following symbols are used in this paper:
A 	 cross-sectional area �m2�;
b 	 channel width �m�;

Cd 	 discharge coefficient �-�;
c 	 velocity of a shallow-water 1D wave �m s−1�;
E 	 total specific energy of flow, also specific energy of

a streamline �m�;
Em 	 mean specific energy of flow �m�;
Eo 	 specific energy of free surface streamline �m�;
g 	 acceleration of gravity �m s−2�;
H 	 total energy head of flow �m�;

Hm 	 mean energy head of flow �m�;
Ho 	 free surface streamline energy head �m�;

h 	 flow depth �m�;
Km 	 cross-sectional averaged piezometric pressure

coefficient �-�;
Ke 	 total head piezometric pressure coefficient �-�;

p /� 	 pressure head �m�;
Q 	 discharge �m3 s−1�;
R 	 curvature radius at channel bed �m�;
U 	 mean flow velocity=Q /A �m s−1�;
u 	 component of local velocity normal to A �m s−1�;
V 	 magnitude of velocity vector �m s−1�;

Vo 	 free surface streamline velocity �m s−1�;
x 	 streamwise distance �m�;
y 	 coordinate in the vertical direction above the

channel bed �m�;
zb 	 elevation of the channel bed �m�;
z 	 vertical elevation of a fluid particle �m�;
� 	 Coriolis coefficient �-�;

� 	 fictitious Coriolis coefficient �-�;
o
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� 	 apparent Boussinesq coefficient �-�;
�xx 	 Boussinesq coefficient �-�;

� 	 specific fluid weight �N m−3�; and
� 	 wavelength �m�.
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