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Abstract

Forensic studies of past hydraulic structure failures are rare despite their critical relevance to modern hydraulic design, and

the writers (Dai et al., 2005) must be congratulated for their outstanding study. Herein the discussion is focused on two aspects

of the conclusion. It is believed that dam overtopping was the primary cause of the Dadu river landslide dam failure, although

aftershocks may have further weakened the embankment. Using physically based equations supported by recent physical model

data, the maximum outflow may be estimated to be about 6000 m3/s.
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Forensic studies of past hydraulic structure failures

are rare despite their critical relevance to modern

hydraulic design, and the writers must be congratu-

lated for their outstanding study. Herein the discussion

is focused on two aspects of the conclusion.

First it is argued that the mechanism of dam failure

was overtopping. Embankment dam overtopping is the

most common cause of earth dam failures, include

landslide dam failures (Schnitter, 1994). For example,

a 217-m high natural dam in the Tzao-Ling valley

(Taiwan) was overtopped and failed in May 1951,
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killing 154 people in the subsequent floods (Hwang,

1999). In New Zealand, a 70-m high landslide dam

was overtopped 11 months after formation and subse-

quently failed (Coleman et al., 2002). The overtopping

of an embankment is a relatively slow process. It is not

comparable to a sudden dam failure. For example, the

South-Fork dam (USA) was overtopped at 11:30 am

and the reservoir rose more than 0.5 m above the dam

crest before the wall failed at 3:00 pm on 31 May 1889

(Wegmann, 1911). During the failure of the Glashütte

dam (Germany) in August 2002, the dam was over-

topped at 12:45 pm and the embankment failed com-

pletely within 30 min between 4:10 and 4:40 pm

(Bornschein and Pohl, 2003). Basically the complete

failure of an embankment may occur several hours
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after the start of overtopping. In June 1786, the Dadu

river landslide dam started to be overtopped on 9 June

and failed rapidly between 9 and 10 June. The timing

was consistent with the rapid development of the dam

breach resulting from the landslide dam overtopping,

while it is likely that aftershocks on 10 June 1786 may

have weakened the embankment.

Second, recent studies demonstrated that embank-

ment dam failure by overtopping evolved from an

initial phase, followed by a rapid breach development

by vertical erosion, then breach width enlargement by

lateral erosion, and reservoir drawdown (Andrews,

1998; Coleman et al., 2002; Rozov, 2003). During

breach development, there is some basic analogy

between the breach shape and the inlet designs of

Minimum Energy Loss culvert and weirs (Coleman

et al., 2002; Chanson, 2004a,b,c). The re-analysis of

detailed experimental data (Andrews, 1998; Coleman

et al., 2002) demonstrated that the flow in the breach

is trans-critical (i.e. 0.5bFrb1.8) and that the total
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Fig. 1. Sketch of embankment dam breach development: cross-section th
head remains constant throughout the breach inlet up

to the throat (Chanson, 2004a). Head losses occur

downstream of the throat when the flow expands

and separation takes place at the lateral boundaries

(Fig. 1). Separation is associated with form drag and

head losses. Basically the movable boundary flow

tends to an equilibrium that is associated with mini-

mum energy conditions and maximum discharge per

unit width for the available specific energy.

Using the analogy with minimum energy loss

structures, the outflow rate during breach develop-

ment must satisfy the continuity equation and Ber-

noulli principle. That is:
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where E1 is the upstream specific energy above cen-

treline dam breach elevation, Bmax is the free-surface

width at the upper lip of the breach, and g is the

gravity acceleration. The coefficient CD accounts for
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Fig. 2. Calculations of breach outflow rate and breach inlet width during breach development.
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the non-rectangular flow cross-sectional shape and

some energy loss. For the data of Coleman et al.

(2002), CD~0.6 m1 / 2/s. During an overtopping

event, the breach size increases with time resulting

in the hydrograph of the breach. In Eq. (1), the breach

free-surface width and specific energy are both func-

tions of time, embankment properties and reservoir

size. For an infinitely long reservoir, the re-analysis of

embankment breach data suggests that:
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where zlip is the inlet lip elevation on the breach

centreline, do is the reservoir height and Bmin is the

free-surface width at the breach throat (Fig. 1). For

completeness, the breach width at the throat is best

correlated by:
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Eqs. (1) (2) and (3) were applied to the Dadu river

landslide dam breach development. Typical results

are shown in Fig. 2 where t is the time from the start

of rapid breach development. They show that the

breach upper lip width reached the dam length (~220

m) about 35 min after breach start and that the maxi-

mum outflow rate was about 6000 m3/s corresponding

to a breach throat velocity in excess of 17 m/s. For

larger times, the underlying assumptions of an infinite-

ly long and wide reservoir are not appropriate, and the

above equations should not be used.

In summary, it is believed that dam overtopping

was the primary cause of the Dadu river landslide dam

failure, although aftershocks may have further weak-

ened the embankment. Using physically based equa-

tions supported by recent physical model data, the

maximum outflow may be estimated to be about

6000 m3/s.
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