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Application of the method of characteristics to the dam break wave problem
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ABSTRACT
In dam break waves, the surge front is a sudden discontinuity characterized by extremely rapid variations of flow depth and velocity. In this study,
simple analytical solutions for instantaneous dam break wave are developed using the method of characteristics. The solutions are obtained for initially
dry horizontal and sloping channels with turbulent motion, and they are compared with several data sets obtained in large-size facilities. A main feature
of the development is its simplicity that is well-suited to students and young professionals.

RÉSUMÉ
Dans les ondes de rupture de barrage, le front d’onde est une discontinuité soudaine caractérisée par des variations extrêmement rapides de tirant d’eau
et de vitesse. Dans cette étude, des solutions analytiques simples sont développées pour l’onde d’une rupture de barrage instantanée en utilisant la
méthode des caractéristiques. Les solutions sont obtenues pour des canaux horizontaux et en pente initialement à sec, avec un écoulement turbulent; elles
sont comparées à plusieurs ensembles de mesures obtenues dans les équipements de grande taille. Une caractéristique principale de ce développement
est sa simplicité qui est bien adaptée aux étudiants et aux jeunes professionnels.
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1 Introduction

Dam break waves have been responsible for numerous losses of
life (e.g. Fig. 1). Related situations include flash flood runoff
in ephemeral streams, debris flow surges and tsunami runup on
dry coastal plains. In all cases, the surge front is a sudden dis-
continuity characterized by extremely rapid variations of flow
depth and velocity. Dam failures motivated basic studies on the
dam break wave, including the milestone contribution by Ritter
(1892) following the South Fork (Johnstown) dam disaster (USA,
1889). Physical modeling of dam break wave is relatively lim-
ited despite a few basic experiments (Table 1). In retrospect, the
experiments of Schoklitsch (1917) were well ahead of their time,
and demonstrated that Armin von Schoklitsch (1888–1968) had
a solid understanding of both physical modeling and dam break
processes. Well-known analytical studies of the dam break on
dry channel include Dressler (1952) and Whitham (1955) for a
horizontal channel, while Hunt (1982, 1984) solved the surge
flow down a sloping channel. Note that all analytical solutions
assumed an instantaneous dam break.

Today, dam break wave predictions are often based upon
numerical predictions, validated by limited data sets. For the
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period 2003–2004, the international database The Web of
ScienceTM listed 40 journal articles on dam break including 34
numerical studies, 4 experimental studies and only one theoret-
ical development. Albeit research initiatives, there has been a
lack of basic theoretical analyzes for the past 30 years. Current
knowledge of dam break wave in dry channels remains rudimen-
tary despite a few studies (e.g. Dressler, 1954; Escande et al.,
1961; Lauber, 1997; Chanson, 2004b). There are also contra-
dictory arguments on the flow fundamentals. For example, some
measurements highlighted a boundary layer region in the surg-
ing wave leading edge (e.g. Mano, 1984; Davies, 1988; Fujima
and Shuto, 1990; Chanson, 2004b), while others indicated quasi-
ideal fluid vertical velocity distributions (Estrade, 1967; Wang,
2002; Jensen et al., 2003).

This study describes simple analytical solutions for instanta-
neous dam break wave based upon the method of characteristics.
The solutions are developed for initially dry horizontal and slop-
ing channels with turbulent motion, and the results are compared
with several data sets obtained in large-size facilities. It is the aim
of this work to provide simple explicit solutions of dam break
wave problems that are easily understood by students, young
researchers, and professionals.
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Figure 1 Photograph of the St Francis dam, USA (March 12,
1928) (Courtesy of Santa Clarita Valley Historical Society)—Looking
upstream with onlookers in the foreground, in front of a 65 m high dam
wall section

Table 1 Characteristics of turbulent dam break wave experiments in dry rectangular channels

Reference Bed slope θ Channel characteristics Reservoir characteristics Remarks
(1) (2) (3) (4) (5)

Schoklitsch (1917) 0 (1) L′ = 26 m, B′ = 0.6 m (1) d ′
o up to 0.25 m

(2) L′ = 150 m, B′ = 1.3 m (2) d ′
o up to 1 m

Dressler (1954) 0 L′ = 65 m, B′ = 0.225 m
(a) Painted timber; (b) Coarse
sand paper; (c) Strips (slats):
h′ = 0.00635 m, l′ = 0.0254 m

d ′
o = 0.055, 0.11 and 0.22 m

Fauré and Nahas (1961) 0.0069◦ L′ = 40.6 m, B′ = 0.25 m 2
types of roughness

d ′
o = 0.23 m So = 1.2 E − 4

Cavaillé (1965) 0 L′ = 40 m, B′ = 0.25 m Glass
walls and steel invert.
(a) Smooth invert.
(b) Rough invert (cylindrical
elements ∅

′ = 20 mm in zigzag,
l′ = 28 mm, h′ = 8 mm)

L′
res = 18 m, rectangular

reservoir
(a) d ′

o = 0.115, 0.23 m (b)
d ′

o = 0.23 m

Estrade (1967) 0 (1) L′ = 23.65 m, B′ = 0.50 m
(a) Smooth invert; (b) Rough
invert (rough cement)

(1) d ′
o = 0.20 & 0.40 m,

L′
res = 13.65 m, rectangular

reservoir

(2) L′ = 23.65 m, B′ = 0.25 m
(a) Smooth invert; (b) Rough
invert (cylindrical elements
∅

′ = 20 mm in zigzag,
l′ = 28 mm, h′′ = 6 mm)

(2) d ′
o = 0.30 m,

L′
res = 0.70 m, rectangular

reservoir

Lauber (1997) 0 L′ = 2 m, B′ = 0.5 m PVC invert 0.15 ≤ d ′
o ≤ 0.6 m,

L′
res < 3.6 m, rectangular

reservoir
5.7◦, 26.5◦ L′ = 14 m, B′ = 0.5 m PVC

invert
d ′

o = 0.3 m, L′
res < 3.6 m,

trapezoidal reservoir
Vertical gate

Chanson et al. (2000) 0 L′ = 15 m, B′ = 0.8 m Smooth
paint invert

Reservoir volume: 0.9 to
1 m3, q(t = 0)′ = 0.15 to
0.17 m2/s

Free-jet discharging
vertically at one end of
channel

Notes: B′: channel width; d′
o: reservoir height; h′: (strip/element) roughness height; L′: total channel length; L′

res: upstream reservoir length; l′: longitudinal
spacing between (strip) roughness element. All experiments were conducted with tap water.

2 Basic equations and solution for a dry
horizontal channel

A dam break wave is the flow resulting from a sudden release of
a mass of fluid in a channel. For 1D applications, the continuity
and momentum equations yield the Saint-Venant equations. For
a prismatic rectangular channel, the dimensionless equations are

∂d

∂t
+ d

∂V

∂x
+ V

∂d

∂x
= 0 (1)

∂V

∂t
+ V

∂V

∂x
+ ∂d

∂x
+ (Sf − So) = 0, (2)

where d is the dimensionless depth (d = d ′/d ′
o), V is the

dimensionless flow velocity, t is the dimensionless time, x is
the dimensionless co-ordinate (x = x′/d ′

o), So is the bed slope
(So = sin θ), θ is the angle between the bed and the horizontal
with θ > 0 for a downward slope, and Sf is the friction slope.
The dash (′) is used to denote dimensional variables: e.g., d ′

o
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is the initial reservoir height. The Saint-Venant equations can-
not be solved analytically usually because of nonlinear terms:
e.g., the friction slope Sf = f/2V ′2/(gD′

H ), where D′
H is the

hydraulic diameter and f is the Darcy-Weisbach friction factor. A
mathematical technique to solve the system of partial differential
equations formed by the Saint-Venant equations is the method of
characteristics which yields a characteristic system of equations

d

dt
(V + 2C) = (So − Sf ) along

dx

dt
= V + C (3a)

d

dt
(V − 2C) = (So − Sf ) along

dx

dt
= V − C (3b)

where C is the dimensionless celerity of a small disturbance. For
a rectangular channel C = 1.

For a frictionless dam break in a wide horizontal channel,
the analytical solution of Eqs (1) and (2) yields Ritter’s solution
(Ritter, 1892)

U = 2, (4)

where U is the dimensionless wave front celerity. At a given time,
the dimensionless free-surface and velocity profile between the
leading edge of the negative wave and the wave front are

x

t
= 2 − 3

√
d for − 1 ≤ x

t
≤ +2 (5)

V = 2

3

(
1 + x

t

)
for − 1 ≤ x

t
≤ +2 (6)

where t is the dimensionless time from dam break. Equations (5)
and (6) were first derived by Barré de Saint-Venant (1871) for a
frictionless positive surge in a horizontal channel.

2.1 Turbulent dam break wave: a simple solution

The turbulent dam break flow is analyzed as an ideal-fluid flow
region behind a flow resistance-dominated tip zone (Fig. 2).

Figure 2 Sketch of the dam break wave in a dry horizontal channel

Whitham (1955) introduced this conceptual approach, but his
mathematical development differs from the present simple
solution.

In the ideal fluid flow region, the characteristic system of
equations become

d

dt
(V + 2C) = 0 along

dx

dt
= V + C (7)

d

dt
(V − 2C) = 0 along

dx

dt
= V − C (8)

In the wave tip region (x1 ≤ x ≤ xs, Fig. 2), the flow velocity
does not vary rapidly in the forward tip zone and experimental
data showed that it is about the wave front celerity U (Dressler,
1954; Estrade, 1967; Lauber, 1997; Liem and Köngeter, 1999).
If the flow resistance is dominant, and the acceleration and iner-
tial terms are small, the dynamic wave equation (Eq. (2)) may
reduce to a diffusive wave equation. For a horizontal channel, it
yields

∂d

∂x
+ f

8

U2

d
= 0 Wave tip region (9)

The integration of Eq. (9) gives the shape of the wave
front

d =
√

f

4
U2(xs − x) (10)

assuming a constant Darcy–Weisbach friction factor for x1 ≤ x ≤
xs, where xs is the dimensionless wave front location (xs = x′

s/d
′
o)

(Chanson, 2005). Next to the leading edge of the wave, the slope
of the free-surface becomes important to counterbalance the flow
resistance.

At the transition between ideal fluid and wave tip regions
(x = x1), the flow depth and velocity must be continuous.

e2hchans
Sticky Note
Correction: the diffusion equation is:
dd/dx + ....
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The flow properties (d1, V1) must satisfy

d1 = 1

9

(
2 − x1

t

)2 =
√

f

4
U2(xs − x1) (11a)

V1 = U = 2

3

(
1 + x1

t

)
. (11b)

The conservation of mass must be satisfied. The mass of fluid in
the wave tip region (x1 ≤ x ≤ xs) must equal the mass of fluid
in the ideal fluid flow profile for x1 ≤ x ≤ 2t

∫ xs

x1

√
f

4
U2(xs − x)dx =

∫ 2t

x1

1

9

(
2 − x

t

)2
dx. (12)

The conservation of mass (Eq. (12)) may be integrated analyt-
ically. After substitution and re-arrangement, it yields an exact
solution in terms of the wave front celerity

8

3

1

f

(
1 − U

2

)3

U2
= t. (13)

The wave front location equals

xs =
(

3

2
U − 1

)
t + 4

fU2

(
1 − U

2

)4

(14)

and the free-surface profile satisfies

d = 1

9

(
2 − x

t

)2 − t ≤ x ≤
(

3

2
U − 1

)
t (15a)

d =
√

f

4
U2(xs − x)

(
3

2
U − 1

)
t ≤ x ≤ xs (15b)

The location of the transition between ideal and friction domi-
nated flow regions is given by Eq. (11b). Equation (13) gives a
direct relationship between the dimensionless wave front celerity
U and dimensionless time t. Equation (14) yields the dimension-
less wave front location as a function of the dimensionless wave
front celerity. Equations (15) and (11b) give the entire dimension-
less free-surface profile d = F(x/t). The results yield an explicit
expression of the wave front celerity, wave front location, and
free-surface and velocity profiles (Chanson, 2005).

3 Dam break wave in a horizontal channel

The assumption of constant friction factor f in the wave tip region
is a gross approximation since the flow depth is zero and the shear
stress is infinite at the wave front leading edge. For turbulent
motion, the flow resistance may be approximated by the Altsul
formula

f = 0.1

(
1.46

k′
s

D′
H

+ 100

Re

)1/4

, (16)

where k′
s is the equivalent sand roughness height, D′

H is
the hydraulic diameter, and Re is the flow Reynolds number
(Idelchik, 1969, 1994; Chanson, 2004a). The Altsul formula is a
slightly less-accurate formula that may be used to initialize the
calculation with the Colebrook–White formula. Assuming that

Eq. (16) holds in unsteady flows, and for a wide channel (i.e.
D′

H ≈ 4d ′), it may be rewritten in the wave tip region as

f = 1

d1/4

(
3.65 × 10−5ks + 2.5 × 10−3

RedU

)1/4

, (17)

where Red = ρ
√

gd3
o/µ is analogous to a Reynolds number and

ks is a dimensionless equivalent roughness height (ks = k′
s/

′
o).

Red is called the dam reservoir flow Reynolds number. It is a
function of fluid properties and initial flow conditions only.

The integration of the diffusive wave equation (Eq. (8)) yields
the shape of wave tip region

d =
(

9

32

(
3.65 × 10−5ks + 2.5 × 10−3

RedU

)1/4

U2(xs − x)

)4/9

.

(18)

The flow properties must be continuous at the transition between
the ideal-fluid region and the wave tip zone. The continuity
equations must be further satisfied and its integration yields
an analytical solution in terms of the dimensionless wave front
celerity

32

13

(
1 − U

2

)7/2

U2
(

3.65 × 10−5ks + 2.5×10−3

RedU

)1/4 = t. (19)

The wave front location equals

xs =
(

3

2
U − 1

)
t + 32

9

(
1 − U

2

)9/2

U2
(

3.65 × 10−5ks + 2.5×10−3

RedU

)1/4

(20)

and the free-surface profile satisfies

d = 1

9

(
2 − x

t

)2 − t ≤ x ≤
(

3

2
U − 1

)
t (21a)

d =
(

9

32

(
3.65 × 10−5ks + 2.5 × 10−3

RedU

)1/4

U2(xs − x)

)4/9

(
3

2
U − 1

)
t ≤ x ≤ xs (21b)

Analytical results are shown in Figs 3–6 for several flow condi-
tions where they are compared with relevant experimental data.
In the particular cases of smooth-turbulent and fully rough tur-
bulent flows, the above results may be simplified (e.g. Chanson,
2005).

3.1 Discussion: comparison with experimental data

The analytical solutions were compared with well-known ana-
lytical solutions (Dressler, 1952; Whitham, 1955) and with
experimental data obtained in large-size facilities (Table 1).
Comparisons were performed in terms of wave front location,
wave front celerity and instantaneous free-surface profiles. Some
examples are presented in Figs 3–6 while details of experimental
investigations are summarized in Table 1. Overall the compar-
ative analyses showed a good agreement between the present
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DRESSLER f = 0.0075
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Smooth turbulent Red=6.3E+4

d
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Figure 3 Dimensionless instantaneous free-surface profiles— Compar-
ison between Eq. (15) assuming f = 0.03, Eq. (20) and Dressler’s
(1952) theory, Whitham’s (1955) theory and experimental data (Schok-
litsch, 1917; d ′

o = 0.074 m, t′ = 9.4 s)

0

0.5

1

-1 0 1 2

RITTER's solution

f=0.15, t=13

f=0.15, t=64

Fully-rough ks=0.09, t=13

Fully-rough ks=0.09, t=64

DRESSLER, Slats, t=13

DRESSLER, Slats,t=64

x /t

d

Figure 4 Dimensionless instantaneous free-surface profiles— Compar-
ison between Eq. (15) assuming f = 0.15, Eq. (21) (ks = 0.09), and
experimental data (Dressler, 1954; d ′

o = 0.22 m, slat invert (strip))

analysis and more advanced solutions as well as experimental
data. For example, Fig. 3 presents a comparison between a data
set by Schoklitsch (1917), Ritter’s (1892) solution, analytical
solutions by Dressler’s (1952) and Whitham’s (1955), Eqs (15)
and (21). Figure 4 shows a data set obtained on rough invert
(Dressler, 1954; slat invert) that is compared with Eqs (12)
and (21). Figure 5 illustrates more specifically the effect of
bed roughness on dam break wave. Two data sets are shown
at a same dimensionless time (t = 56) for smooth- and rough
inverts. Data and calculations indicate a slower wave front
celerity on rough invert, associated with a thicker wave front
region.

The agreement between analytical solutions and experimental
data is dependent upon the flow resistance estimate, namely the

0

0.5

1

-1.5 -0.5 0.5

RITTER's solution
DRESSLER f = 0.02
f = 0.02, t=56.8
Smooth turbulent Red=3.4E+5, t=56
Data smooth invert, t=56.8
f = 0.3, t=55.6
Fully-rough ks=0.35, t=55.6
Data rough invert, t=55.6

d

x /t

Figure 5 Dimensionless instantaneous free-surface profiles—Com-
parison between smooth-invert and rough-invert dam break wave for
t = 56 − Smooth-invert: Cavaillé’s (1965) data (d ′

o = 0.23 m, smooth
invert), Dressler’s (1952) theory (f = 0.02), Eq. (15) assum-
ing f = 0.02, and Eq. (21); Rough-invert: Cavaillé’s (1965) data
(d ′

o = 0.23 m, rough invert), Eq. (14) assuming f = 0.3, and Eq. (21)
(ks = 0.35)

0

0.2

0.4

0.6

0.8

1

00.51

CAVAILLE smooth
invert, t=56.8

CAVAILLE rough
invert, t=55.6

DRESSLER smooth
invert, t=66

DRESSLER slats,
t=13

Turbulent flow
ks=0.35, t=55.6

d /d 1

(x s -x )/(x s -x 1 )

Figure 6 Dimensionless free-surface profile d/d1 in the wave tip
region—Comparison between Eq. (18) and the data of Dressler (1954)
and Cavaillé (1965)

selection of the relative roughness ks (Eq. (21)) or upon the selec-
tion of friction factor f (Eq. (15)). Accurate calibrations must be
performed using instantaneous free-surface profiles. These pro-
vide a Lagrangian description on the flow. Alternate techniques
based upon wave front location and celerity, or fixed point mea-
surements, are less accurate. In the present study, for the data sets
listed in Table 1, the relative roughness ks (Eq. (21)), or the fric-
tion factor f (Eq. (15)), were found to be independent of time and
experimental flow conditions for a given type of invert roughness.
The results were further consistent between independent data sets
(Chanson, 2005).

Figure 6 presents the shape of the wave front, with the dimen-
sionless water depth d/d1 as a function of the dimensionless
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Figure 7 Sketch of longitudinal distributions of bed shear stress in tur-
bulent dam break wave—Comparison between the theoretical models of
Dressler (1952), Whitham (1955), and present study (Eqs (15) and (21))

distance (xs − x)/(xs − x1), where the subscripts s and 1
refer, respectively, to the wave leading edge and to the transi-
tion between ideal fluid and wave tip regions. Note the close
agreement between Eq. (18), and the experimental data.

In this study, Eqs (15) and (21) are based upon two differ-
ent longitudinal distributions of boundary shear stress. This is
illustrated in Figure 7 showing the differences in longitudinal
bed shear stress distributions between the different theoretical
models. Yet all theories gave close results in terms of wave front
celerity and instantaneous free-surface profiles and good agree-
ment with experimental data. All these suggest little effects of
some discontinuity at x = x1. In fact the approximation of a con-
stant Darcy friction factor f (Dressler, 1952; Whitham, 1955;
Present study (Eq. (15)) appears reasonable in comparison with
the more sophisticated model (Eq. (21)), although the physics
is questionable. This “apparent contradiction” may reflect upon
our ignorance of some fundamental turbulent process in the wave
front.

4 Dam break wave in a sloping channel with some
initial motion

The above approach may be extended to a sloping channel when
the flow velocity behind the dam is initially Vo for t < 0. Prior to
dam break, the translation of both dam and reservoir is friction-
less. The sudden dam removal takes place at t = 0 when the dam
wall is located at x = 0. After dam break, the flow is assumed to
be an ideal fluid flow region behind a friction dominated wave tip

Figure 8 Sketch of a dam break wave in an upward slope with initial
flow motion

region, while it is assumed that the translation of the undisturbed
reservoir remains frictionless for t > 0 (Fig. 8).

In the ideal fluid flow region, Ritter’s solution may be extended
(Peregrine andWilliams, 2001; Chanson, 2005). For a mild slope,
the dimensionless flow properties are

d = 1

9

(
2 + Vo + 1

2
Sot − x

t

)2

for Vo − 1 ≤ x

t
≤ x1

t

(22a)

C = 1

3

(
2 + Vo + 1

2
Sot − x

t

)
for Vo − 1 ≤ x

t
≤ x1

t

(22b)

V = 2

3

(
1 + 1

2
Vo + Sot + x

t

)
, for Vo − 1 ≤ x

t
≤ x1

t

(22c)

where the bed So is positive for a downward slope.
In the wave tip region, the flow properties may be deduced

using the diffusion wave equation taking into account flow
resistance and bed slope

∂d

∂x
+ f

8

U2

d
− So = 0. Wave tip region (23)

The complete integration yields a complicated result that is pre-
sented in the Appendix A. A Taylor series expansion of the
solution gives the earlier result

d =
(

9

32

(
3.65 × 10−5ks + 2.5 × 10−3

RedU

)1/4

U2(xs − x)

)4/9

(18)

that will be used in first approximation.
The free-surface profile and velocity must be continuous at

the transition between the ideal fluid region and the friction-
dominated wave tip. The conservation of mass must be also
satisfied. The exact solution of the dam break wave in terms
of the wave front celerity is

32

13

(
1 + 1

2Vo + 1
2Sot − U

2

)7/2

U2
(

3.65 × 10−5ks + 2.5×10−3

RedU

)1/4 = t = t, (24)

e2hchans
Sticky Note
The diffusion equation is:
dd/dx + ....
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while the wave front location equals

xs =
(

3

2
U − 1

2
Vo − Sot − 1

)
t

+ 32

9

(
1 + 1

2Vo + 1
2Sot − U

2

)9/2

U2
(

3.65 × 10−5ks + 2.5×10−3

RedU

)1/4 . (25)

The free-surface profile is given by

d = 1

9

(
2 + Vo + 1

2
Sot − x

t

)2

for Vo − 1 ≤ x

t
≤ x1

t

(26a)

d =
(

9

32

(
3.65 × 10−5ks + 2.5 × 10−3

RedU

)1/4

U2(xs − x)

)4/9

for
x1

t
≤ x

t
≤ xs

t
. (26b)

The location of the transition between ideal fluid and wave tip
regions is

x1 =
(

3

2
U − 1

2
Vo − Sot − 1

)
t, (27)

Equation (24) provides an explicit relationship between the
dimensionless wave front celerity and dimensionless time. Note
that the solution in terms of the wave front celerity is nonlinear
with the dimensionless time present on both sides of Eq. (24).
Equation (25) yields the dimensionless wave front location as a
function of the dimensionless wave front celerity and dimension-
less time. Equations (26) and (27) give the entire dimensionless
free-surface profile.

5 Summary and concluding remarks

New analytical solutions of turbulent dam break wave in dry
channels are presented. The flow is analyzed using the concep-
tual model of Whitham (1955) with a friction-dominated front
region followed by an ideal-fluid flow. For a horizontal channel
and a semi-infinite reservoir, a series of solutions are derived for
turbulent flow assuming a nonconstant Darcy friction factor in
the wave front region. The analytical results were validated suc-
cessfully with experimental data in large-size facilities (Table 1)
and by comparison with more-advanced theoretical models. Flow
resistance estimates are critical, and instantaneous free-surface
profiles are deemed the best validity tests.

A main feature of the developments is the simplicity. The
theoretical results yield simple explicit analytical expressions in
terms of wave front celerity, wave front location and free-surface
profile. They illustrate a simple pedagogical application of the
Saint-Venant equations and method of characteristics, linking
together the ideal-fluid flow equations yielding Ritter’s solution
in a horizontal channel, with a diffusive wave equation for the

wave tip region. The new solutions (e.g. Eqs (15), (21) and (26))
yield realistic solutions of the dam break wave with bed friction.
Both ideal-fluid flow calculations and diffusive wave equations
constitute relatively simple lecture materials. At the University of
Queensland, the lecture material is taught in an advanced elective
to civil and environmental engineering students in fourth year
(subject CIVL4120 Advanced open channel flow and design).
The explicit analytical solutions provide further validation tools
for the numerical integration of the method of characteristics
applied to dam break wave. A comparison between numerical
results, analytical solutions and experimental results under con-
trolled flow conditions may assist in the accurate selection of
flow resistance coefficient and numerical schemes. Finally, the
simplicity of the equations may allow some extension to more
complicated flow situations and non-Newtonian fluids, for exam-
ple, like Chanson et al. (2006) who applied successfully the
mathematical treatment of Hunt (1982) to dam break wave of
thixotropic fluids.

Present theoretical solutions are based upon a few key assump-
tions. These include the assumption V(x, t) = U(t) in the wave tip
region, and some discontinuity of ∂d/∂x, ∂V/∂x and τ0 at the tran-
sition between wave tip and ideal-fluid flow regions (i.e. x = x1).
A number of experiments tend to support the first approxima-
tion: e.g., Estrade (1967), Liem and Köngeter (1999). These data
suggested little longitudinal variations in velocity in the wave
tip region. Further comparisons between present solutions and
experimental results were successful for a fairly wide range of
experimental conditions obtained independently and including
instantaneous free-surface profiles, wave front celerity, and wave
front locations. These comparisons constitute a solid validation
of the proposed theory. It is acknowledged that the present solu-
tions are limited to semi-infinite reservoir, rectangular channel
and quasi-instantaneous dam break. The latter approximation is
often reasonable for concrete dam failure (e.g. Fig. 1) but it is
not applicable to many other applications including embankment
breach.
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Appendix A—Wave front shape in an inclined channel

Considering an instantaneous dam break wave on a mild-sloping
invert, the diffusive wave equation in the wave front is

∂d

∂x
+ f

8

U2

d
− So = 0. (A1)

For a turbulent flow, the Darcy–Weisbach friction factor f may
be approximated by the Altsul formula. For a wide channel, the
formula may be written as

f = 1

d1/4

(
3.65 × 10−5ks + 2.5 × 10−3

RedU

)1/4

, (A2)

where ks is the a relative roughness height and Red = ρ
√

gd3
o/µ.
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Equation (A1) may be rewritten as

∂d

∂t
+ X

d5/4
= So, (A3)

where

X = 0.1

8

(
1.46

4
ks + 100

4

1

URed

)1/4

U2. (A4)

The boundary conditions of Eq. (A3) are: d = 0 at the wave front
(x = xs), and ∂d/∂x < 0 in the wave front. Equation (A3) may
be solved analytically. For So �= 0, the exact solution is

So(xs − x)

= 0.020034

(
X

So

)4/5

− d − 4

5

(
X

So

)4/5

× Ln

((
X

So

)1/5

− d1/4

)
− 2

√
2(5 + √

5)

5

(
X

So

)4/5

× ArcTan


−

(−1 + √
5)
(

X
So

)1/5 + 4d1/4√
2(5 + √

5)
(

X
So

)1/5




− 2
√

10 − 2
√

5

5

(
X

So

)4/5

× ArcTan


 (1 + √

5)
(

X
So

)1/5 + 4d1/4

√
10 − 2

√
5
(

X
So

)1/5




−
(

1√
5

− 1

5

)(
X

So

)4/5

Ln

((
X

So

)2/5

−−1 + √
5

2

(
X

So

)1/5

d1/4 + √
d

)

+
(

1√
5

+ 1

5

)(
X

So

)4/5

Ln

((
X

So

)2/5

+1 + √
5

2

(
X

So

)1/5

d1/4 + √
d

)
. (A5)

Notation

C = Dimensionless celerity of a small disturbance for an
observer travelling with the flow: C = C′/

√
gd ′

o

C′ = Celerity (m/s) of a small disturbance for an observer
travelling with the flow; for a rectangular channel:
C′ = √

gd ′
o

D′
H = Hydraulic diameter (m)
d = Dimensionless flow depth measured normal to the

invert: d = d ′/d ′
o

d ′ = Flow depth (m) measured normal to the invert
d ′

o = Initial reservoir height (m) measured normal to the
chute invert

d1 = Flow depth at the upstream end of the wave tip region:
d1 = d ′

1/d
′
o

f = Darcy–Weisbach friction factor
g = Gravity constant: g = 9.8 m/s2

h′ = Roughness element height (m)
ks = Dimensionless roughness height: ks = k′

s/d
′
o

k′
s = Equivalent sand roughness height (m)

L′ = Channel length (m)
L′

res = Reservoir length (m)
l′ = Longitudinal spacing (m) between roughness elements
q′ = Volume flow rate per unit width (m2/s)

Red = Dimensionless Reynolds number: Red = ρ
√

gd3
o/µ

Sf = Friction slope: Sf = f/2V ′2/(gD′
H )

So = Bed slope: So = sin θ

t = Dimensionless time from dam removal: t = t′
√

g/d ′
o

t′ = Time (s) from dam removal
U = Dimensionless wave front celerity: U = U ′/

√
gd ′

o

U ′ = Wave front celerity (m/s)
V = Dimensionless flow velocity: zV = V ′/

√
gd ′

o

V ′ = Flow velocity (m/s)
Vo = Initial dimensionless reservoir velocity positive

downstream
V1 = Dimensionless flow velocity at the upstream end of the

wave tip region
W ′ = Channel width (m)
X = Dimensionless parameter:

X = 0.1
8

(
1.46

4 ks + 100
4

1
URed

)1/4
U2

x = Dimensionless longitudinal distance measured from the
dam wall: x = x′/d ′

o

x′ = Longitudinal distance (m) measured from the dam wall
xs = Dimensionless wave front position
x1 = Dimensionless location at the upstream end of the wave

tip region

Greek symbols
µ = Dynamic viscosity (Pa.s)
ν = Kinematic viscosity (m2/s): ν = µ/ρ

θ = Bed slope angle
ρ = Fluid density (kg/m3)

τ ′
o = Boundary shear stress (Pa)

Subscript
1 = Flow conditions at the transition between ideal-fluid

and wave tip regions

o = Initial flow conditions in the reservoir

Superscript
′ = Dimensional variable
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