Application

Considering the flow upstream of a gate, the gate suddenly closes. The initial flow conditions were: $Q = 5000 \text{ m}^3/\text{s}$, d = 5 m, B = 100 m. The new discharge is: $Q = 3000 \text{ m}^3/\text{s}$. Compute the new flow conditions.

Solution

The surge is an advancing wave front (i.e positive surge). Using the quasi-steady flow assumption, the initial flow conditions (upstream of surge) are: $d_1 = 5$ m, $V_1 = 10$ m/s, $Q_1 = 5000$ m³/s (Fr = 1.43). The flow conditions downstream of the front surge are $Q_2 = 3000$ m³/s and B = 100 m.

First iteration: To start the calculations, it may be assumed U = 0 (i.e. stationary surge or hydraulic jump). For the second iteration, a new value of U is selected. For example, U = 2 m/s. Then:

$$(4-5) \frac{d_2}{d_1} = \frac{1}{2} * \left(\sqrt{1 + 8 * Fr_1^2} - 1 \right)$$

$$(4-6) \frac{Fr_2}{Fr_1} = \frac{2^{3/2}}{\left(\sqrt{1+8*Fr_1^2} - 1\right)^{3/2}}$$

$$Fr_2 = \frac{V_2 + U}{\sqrt{g * d_2}}$$

Lastly the continuity equation is checked: is (V_2*d_2*B) equal to $Q_2 = 3000 \text{ m}^3/\text{s}$?

Calculations are repeated until a suitable value of U satisfy the continuity equation.

Notation:	U	Fr ₁	d ₂	Fr ₂	V_2	V2*d2*B
Equation:			Eq. (4.5)	Eq. (4.6)	Definition	Continuity
					of Fr ₂	equation
1st iteration	0.0	1.43	7.91	0.72	6.3	5000
2nd iteration	2	1.71	9.88	0.62	4.1	4024
3rd iteration	3	1.86	10.9	0.58	2.98	240
Solution	3.26	1.89	11.1	0.57	2.70	3000