A culvert is to be built to pass 25 m³/s under a road embankment crossing a flood plain. The ground level is R.L. 12.000 m and the water level corresponding to this flow is expected to be R.L. 13.100 m. Both levels are at the centreline of the embankment which is 25-m wide at its base. The flood gradient is 0.003 and the upstream flood plain is 12 m wide.

(A) Design a minimum energy loss culvert with a maximum throat width of 4.2 m. (Use "simple" method for design. "NO AFFLUX" design.)

(B) Design the culvert inlet.

(A) $B_{min} = 4.2 \text{ m} \Rightarrow \Delta z_0 = 1.02 \text{ m}, B_{max} = 10.10 \text{ m}$ (for zero afflux) Barrel: $S_c = 0.0032$ (f=0.0147 concrete) ΔH available= 0.15 m, $\Delta H_{exit} = 0.25$ (ideal), 0.08 m (real) \Rightarrow Physical model

(B) $L_{min}(inlet) = 5.05 \text{ m}$ - Inlet shape: straight wingwalls

Distance	Excav.	Natural	Invert	Width	$d_{\mathbf{c}}$	q
C.L.	depth	Ground	level (m	(m)	(m)	(m^2/s)
embank	(m)	level (m	R.L.)			
ment		R.L.)				
-17.55	0.000	12.053	12.053	10.10	0.86	2.48
-15.49	0.255	12.046	11.792	7.69	1.03	3.25
-14.14	0.510	12.042	11.533	6.11	1.20	4.09
-13.19	0.764	12.040	11.275	5.01	1.36	4.99
-12.50	1.019	12.038	11.018	4.20	1.53	5.95
0.00	1.019	12.000	10.981	4.20	1.53	5.95
12.50	1.019	11.963	10.943	4.20	1.53	5.95
15.24	0.764	11.954	11.190	5.01	1.36	4.99
18.99	0.510	11.943	11.433	6.11	1.20	4.09
24.35	0.255	11.927	11.672	7.69	1.03	3.25
32.50	0.000	11.903	11.903	10.10	0.86	2.48

Design: straight conical shape (7-degree)

Notes:

- (1) Fixed wingwall shape \Rightarrow calculated invert excavation
- (2) Barrel length ~ embankment base length
- (3) Outlet length: selected on the basis of a straight conical shape (7°)